Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:00:19.371Z Has data issue: false hasContentIssue false

Reail Space Renormalization Group for Self Organized Criticality in Sandpile Models

Published online by Cambridge University Press:  03 September 2012

S. Zapperi
Affiliation:
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
A. Vespignanit
Affiliation:
Department of Mathemathics, Yale University, New Haven, CT-06520-8283, USA
L. Pietronero
Affiliation:
Dipartimento di Fisica, Université di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy
Get access

Abstract

We have introduced a new renormalization group approach that allows us to describe the critical stationary state of sandpile models (Phys. Rev. Lett. 72, 1690 (1994)). We define a characterization of the phase space in order to study the evolution of the dynamics under a change of scale. We obtain a non trivial actractive fixed point for the parameters of the model that clarifys the self organized critical nature of these models. We are able to compute the values of the critical exponents and the results are in good agreement with computer simulations. The method can be naturally extended to several other problems with non equilibrium stationary state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bak, P., Tang, C. and Wiesenfeld, K., Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988).Google Scholar
[2] Grassberger, P. and Manna, S.S., J.Phys.France 51, 1077 (1990).Google Scholar
[3] Kadanoff, L.P., Nagel, S.R., Wu, L. and Zhu, S., Phys.Rev. A39, 6524 (1989)Google Scholar
[4] Christensen, K., Fogedby, H.C. and Jensen, H.J., J. Stat. Phys. 61, 653 (1991).Google Scholar
[5] Manna, S.S., J.Phys. A 24, L363 (1991).Google Scholar
[6] Manna, S.S., J. Stat.Phys. 59,509 (1990); Physica A 179,249 (1991)Google Scholar
[7] Zhang, Y.C., Phys. Rev. Lett., 63, 470 (1989).Google Scholar
[8] Manna, S.S., Kiss, L.B. and Kertesz, J., J.Stat.Phys. 61, 923 (1990).Google Scholar
[9] Dhar, D. and Ramaswamy, R., Phys. Rev. Lett. 63, 1659 (1989); D.Dhar, Phys. Rev. Lett. 64,1613 (1991); S. N.Majumdar and D. Dhar, Physica A 185, 129 (1992) Phys. Rev. A 38, 364 (1988).Google Scholar
[10] Pietronero, L., Vespignani, A. and Zapperi, S., Phys. Rev. Lett. 72, 1690 (1994).Google Scholar
[11] Pietronero, L., Erzan, A. and Evertsz, C., Phys.Rev.Lett. 61, 861 (1988); A.Erzan, L. Pietronero and A. Vespignani, The Fixed Scale Transformation Approach to Fractal Growth, submitted to Rev. Mod. Phys 1994.Google Scholar
[12] Vespignani, A., Zapperi, S. and Pietronero, L., to be published on Phys. Rev. E.Google Scholar
[13] Hallgass, R. and Loreto, V., (unpublished)Google Scholar
[14] Loreto, V., Pietronero, L., Vespignani, A. and Zapperi, S., (to be published)Google Scholar