Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:04:35.313Z Has data issue: false hasContentIssue false

Real-time observation of ion beam eroded silicon surfaces: Ripple propagation, coherence and noise effects in surface erosion

Published online by Cambridge University Press:  01 February 2011

S. Habenicht
Affiliation:
II. Physikalisches Institut and Sonderforschungsbereich 602, Georg-August-Universität Göttingen, Bunsenstr. 7–9, D-37073 Göttingen, Germany
K. P. Lieb
Affiliation:
II. Physikalisches Institut and Sonderforschungsbereich 602, Georg-August-Universität Göttingen, Bunsenstr. 7–9, D-37073 Göttingen, Germany
Get access

Abstract

The evolution of ion beam eroded Silicon surfaces was measured in real-time by combining focused ion beam technology with scanning electron microscopy. By detecting the secondary electrons emitted during implantation the surface was monitored in-situ during the erosion process of a Gallium focused ion beam. Repetitive scanning of the ion beam over the surface effectuates a coherent erosion of the exposed surface area, with the continuum theory of erosion as the ergodic limitation. Surface ripple as proposed by linear erosion theory were observed for oblique incidence of the ion beam and their propagation with progressing erosion time as well as their velocity dispersion were monitored. The ripple wavelength has been observed to increase with the erosion time and the value of the ripple velocity was observed to agree qualitatively with the results of Monte-Carlo simulations of the erosion process.

Noise effects acompanying the erosion process are found to be responsible for the reorientation of the ripples when the orientation of the ion beam onto the surface is varied. This mechanism is discussed to stimulate further efforts in this field of surface erosion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sigmund, P. in “Sputtering by Particle Bombardment I”, edited by Behrisch, R. and Wittmaack, K. (Springer Verlag Heidelberg, 1981).Google Scholar
2. Barabasi, A. L. and Stanley, H. E., “Fractal concepts of surface growth” (Cambridge University Press, Cambridge, 1995).Google Scholar
3. Wolf, D. E. and Villain, J., Europhys. Lett. 13, 389 (1990);Google Scholar
Mullins, W. W., J. Appl. Phys. 28, 333 (1957).Google Scholar
4. Facsko, S., Dekorsky, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A. and Hartnagel, H.L., Science 285, 1551 (1999).Google Scholar
5. Carter, G., Nobes, M. J., Paton, F., Williams, J. S. and Whitton, J. L., Rad. Effects 33, 65 (1977).Google Scholar
6. Carter, G., Vishniyakov, V., and Nobes, M. J., Nucl. Instr. and Methods B 115, 440 (1996).Google Scholar
7. Carter, G. and Vishnyakov, V., Phys. Rev. B 54, 17647 (1996).Google Scholar
8. Chason, E., Mayer, T. M., Kellerman, B. K., McIlroy, D. T. and Howard, A. J., Phys. Rev. Lett. 72, 3040 (1994).Google Scholar
9. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar
10. Cuerno, R. and Barabasi, A. L., Phys. Rev. Lett. 74, 4746 (1995).Google Scholar
11. Koponen, I., Hautala, M., and Sievänen, O. P., Phys. Rev. Lett. 78, 2612 (1997).Google Scholar
12. Habenicht, S., Bolse, W., Lieb, K. P., Reimann, K., and Geyer, U., Phys. Rev. B 60, R2200 (1999).Google Scholar
13. Habenicht, S., Lieb, K. P., Bolse, W., Geyer, U., Roccaforte, F., and Ronning, C., Nucl. Instrum. Methods B 161–163, 962 (2000).Google Scholar
14. Habenicht, S., Bolse, W., Feldermann, H., Geyer, U., Hofsäss, H., Lieb, K. P. and Roccaforte, F., Europhys. Lett. 50, 209 (2000).Google Scholar
15. Rusponi, S., Costantini, G., Boragno, C. and Valbusa, U., Phys. Rev. Lett. 81, 2735 (1998).Google Scholar
16. Schlatmann, R., Shindler, J. D., and Verhoeven, J., Phys. Rev. B 54, 10880 (1996).Google Scholar
17. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B., and Floro, J. A., Phys. Rev. Lett. 82, 2330 (1999).Google Scholar
18. Erlebacher, J., Aziz, M.J., Chason, E., Sinclair, M.B. and Floro, J.R., J. Vac. Sci. Technol. A 18, 115 (2000).Google Scholar
19. Habenicht, S., Phys. Rev. B 63, 125419 (2001).Google Scholar
20. Koponen, I., Hautala, M., and Sievänen, O. P., Nucl. Instr. And Methods B 129, 349 (1997).Google Scholar
21. Koch, J., Grün, K., Ruff, M., Wernhardt, R., and Wieck, A. D., Proceedings IECON ‘99 San José (USA) IEEE.Google Scholar
22. Habenicht, S., Lieb, K.P., Kock, J. and Wieck, A.D., Phys. Rev. B 65, 115327 (2002).Google Scholar
23. Wiemann, C., Versen, M., and Wieck, A. D., J. Vac. Sci. Technol. B 16, 2567 (1998).Google Scholar
24. Dötsch, U. and Wieck, A. D., Nucl. Inst. and Meth. B 139, 12 (1998).Google Scholar
25. Ziegeler, J. F., Biersack, J. P. and Littmark, K., “The Stoppings and Ranges of Ions in Solids”, (Pergamon Press, New York, 1985).Google Scholar
26. Melngailis, J., J. Vac. Sci. Technol. B 5, 469 (1987).Google Scholar
27. Orloff, J., Rev. Sci. Instrum. 64, 1105 (1993).Google Scholar
28. Prewitt, P.D. and Mair, G.L.R., “Focused Ion Beams from Liquid Metal Sources”, Research Studies Taunton (1991).Google Scholar
29. Nastasi, M., Mayer, J. W., and Hirvonen, J. K., “Ion-Solid Interactions, Fundamentals and Applications”, (Cambridge Solid State Science Series, Cambridge, 1996).Google Scholar
30. Mayer, T. S., Chason, E., and Howard, A. J., J. Appl. Phys. 76, 1633 (1994).Google Scholar
31. Cuerno, R., Makse, H. A., Tomassone, S., Harrington, S. T. and Stanley, H. E., Phys. Rev. Lett. 75, 4464 (1995).Google Scholar
32. Park, S., Kahng, B., Jeong, H., and Barabasi, A.-L., Phys. Rev. Lett. 83, 3486 (1999).Google Scholar
33. Rusponi, S., Costantini, G., Boragno, C. and Valbusa, U., Phys. Rev. Lett. 81, 4148 (1998).Google Scholar
34. Kardar, M., Parisi, G., and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
35. Michely, T. and Teichert, C., Phys. Rev. B 50, 11156 (1994).Google Scholar