Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T11:06:04.305Z Has data issue: false hasContentIssue false

Reduction in Gate Leakage Current of AlGaN/GaN HEMT by Rapid Thermal Oxidation

Published online by Cambridge University Press:  18 February 2014

Sreenidhi T
Affiliation:
Microelectronics and MEMS Laboratory, Dept. of Electrical Engg., IIT Madras, Chennai, India.
A. Azizur Rahman
Affiliation:
Condensed Matter Physics and Material Science, TIFR, Mumbai, India.
Arnab Bhattacharya
Affiliation:
Condensed Matter Physics and Material Science, TIFR, Mumbai, India.
Amitava DasGupta
Affiliation:
Microelectronics and MEMS Laboratory, Dept. of Electrical Engg., IIT Madras, Chennai, India.
Nandita DasGupta
Affiliation:
Microelectronics and MEMS Laboratory, Dept. of Electrical Engg., IIT Madras, Chennai, India.
Get access

Abstract

Rapid Thermal Oxidation (RTO) of AlGaN barrier has been employed to reduce the gate leakage current in AlGaN/GaN High Electron Mobility Transistors. Current Voltage (I – V) and Capacitance Voltage (C – V) characteristics of Schottky Barrier diodes and Metal Oxide Semiconductor diodes are compared. At room temperature, reduction in gate leakage current over an order of magnitude in reverse bias and four orders of magnitude in forward bias is achieved upon oxidation. While the gate current reduces upon RTO, gate capacitance does not change indicating gate control over the channel is not compromised. I – V and C – V characterization have been carried out at different temperatures to get more insight into the device operation.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sreenidhi, T., Naveen, K., Rahman, A. A., Bhattacharya, A., DasGupta, A. and DasGupta, N., IEEE Trans. Electron Dev. 60(10), 3157, (2013).Google Scholar
Zhang, H., Miller, E. J., and Yu, E. T., J. Appl. Phys., 99, 023703, (2006).CrossRefGoogle Scholar
Yan, D., Lu, H., Cao, D., Chen, D., Zhang, R., and Zheng, Y., Appl. Phys. Lett., 97(15), 153503, (2010).CrossRefGoogle Scholar
Arulkumaran, S., Egawa, T., Ishikawa, H., and Jimbo, T., Appl. Phys. Lett., 82(18), 3110, (2003).CrossRefGoogle Scholar
Ye, P. D, Yang, B., Ng, K. K., Bude, J., Wilk, G. D., Halder, S., and Hwang, J. C. M., Appl. Phys. Lett., 86, 063501, (2005).CrossRefGoogle Scholar
Masato, H., Ikeda, Y., Matsouno, T, Inoue, K., and Nishii, K., IEDM 00, 377, (2000).Google Scholar
Roccaforte, F, Giannazzo, F., Iucolano, F., Bongiorno, C. and Raineri, V., Appl. Phys. Lett., 92, 252101, (2008).CrossRefGoogle Scholar
Inoue, K., Ikeda, Y., Masato, H., Matsouno, T, and Nishii, K., IEDM 01, 577, (2001).Google Scholar
Roccaforte, F, Giannazzo, F., Iucolano, F., Bongiorno, C. and Raineri, V., J. Appl. Phys., 106, 023703, (2009).CrossRefGoogle Scholar
Yue, Y., Hao, Y., Zhang, J., Ni, J., Mao, W., Feng, Q., and Liu, L., IEEE Electron. Dev. Lett., 29(8), 838, (2008).CrossRefGoogle Scholar
YuanZheng, Y., Yue, H., Qian, F., JinCheng, Z., XiaoHua, M. and JinYu, N., Sci. China Ser E-Tech. Sci., 52(9), 2762, (2009).Google Scholar
Ganguly, S., Verma, J., Li, G., Zimmermann, T., Xing, H. and Jena, D., Appl. Phys. Lett., 99, 193504, (2011).CrossRefGoogle Scholar
Banerjee, A., Taking, S., MacFarlane, D., Dabiran, A., and Wasige, E., EuMA, 302, 2010.Google Scholar
Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Markov, A. V., Dabiran, A. M., Wowchak, A. M., Osinsky, A. V., Cui, B., Chow, P. P., Pearton, S. J., Appl. Phys. Lett., 91, 232116, (2007).CrossRefGoogle Scholar