Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T02:30:30.206Z Has data issue: false hasContentIssue false

Reduction of thermal conductivity in semiconducting composite films consisting of silicon and transition-metal silicide nanocrystals

Published online by Cambridge University Press:  11 April 2013

N. Uchida
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Japan
Y. Ohishi
Affiliation:
Graduate School of Engineering, Osaka University, Japan
K. Kurosaki
Affiliation:
Graduate School of Engineering, Osaka University, Japan
S. Yamanaka
Affiliation:
Graduate School of Engineering, Osaka University, Japan Research Institute of Nuclear Engineering, University of Fukui, Japan
T. Tada
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Japan
T. Kanayama
Affiliation:
National Institute of Advanced Industrial Science and Technology, Japan
Get access

Abstract

We observed significant reduction of thermal conductivity in semiconducting composite films of Si and molybdenum (Mo)-silicide nanocrystals (NCs). These films were synthesized by phase separation due to annealing at 700 -1000°C from sputtered amorphous Mo–Si alloy. Transmission electron microscope images showed that the NCs were grown to diameters of∼10 nm in the films by annealing at 800°C. Raman scattering spectra showed lower shift of peak positions of Si transverse optical (TO) phonon due to the confinement effect and the tensile stress. The electrical resistivity of the films was 0.17- 9 Ωm at room temperature and showed a semiconducting temperature dependence at 20-400 K. Thermal conductivity of the film was reduced to 4.4 W/mK by enhancement of phonon scattering at NC interfaces, suggesting that the composite film is promising as a high-efficiency Si-based thermoelectric material.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shanks, H. R., Maycock, P. D., Sidles, P. H., and Danielson, G. C., Phys. Rev. 130, 1743 (1963).10.1103/PhysRev.130.1743CrossRefGoogle Scholar
Bux, S. K., Blair, R. G., Gogna, P. K., Lee, H., Chen, G., Dresselhaus, M. S., Kaner, R. B., and Fleurial, J.-P., Adv. Funct. Mater. 19, 2445 (2009).10.1002/adfm.200900250CrossRefGoogle Scholar
Wang, Z., Alaniz, J. E., Jang, W., Garay, J. E., and Dames, C., Nano Lett. 11, 2206 (2011).10.1021/nl1045395CrossRefGoogle Scholar
Schierning, G., Theissmann, R., Stein, N., Petermann, N., Becker, A., Engenhorst, M., Kessler, V., Geller, M., Beckel, A., Wiggers, H., and Schmechel, R.. J. Appl. Phys. 110, 113515 (2011).10.1063/1.3658021CrossRefGoogle Scholar
Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., Nature 451, 163 (2008).10.1038/nature06381CrossRefGoogle Scholar
Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A., and Heath, J. R., Nature 451, 168 (2007).10.1038/nature06458CrossRefGoogle Scholar
Tang, J., Wang, H. T., Lee, D. H., Fardy, M., Huo, Z., Russel, T. P., and Yang, P., Nano Lett., 10, 4279 (2010).10.1021/nl102931zCrossRefGoogle Scholar
Yu, J. K., Mitrovic, S., Tham, D., Varghese, J., and Heath, J. R., Nat. Nanotechnol. 5, 718 (2010).10.1038/nnano.2010.149CrossRefGoogle Scholar
Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).10.1063/1.110617CrossRefGoogle Scholar
Uchida, N. and Kanayama, T., Japanese Patent No. 2010–207987 (16 September 2010). Google Scholar
Ohishi, Y., Kurosaki, K., Suzuki, T., Muta, H., Yamanaka, S., Uchida, N., Tada, T., and Kanayama, T., Thin Solid Films (submitted).Google Scholar
Piscanec, S., Cantoro, M., Ferrari, A. C., Zapien, J. A., Lifshitz, Y., Lee, S. T., Hofmann, S., and Robertson, J., Phys. Rev. B 68, 241312 (2003).10.1103/PhysRevB.68.241312CrossRefGoogle Scholar
Poborchii, V., Tada, T., and Kanayama, T., J. Appl. Phys. 97, 104323 (2005).10.1063/1.1904157CrossRefGoogle Scholar
Kato, R. and Hatta, I., International Journal of Thermophysics, 26, 179 (2005).10.1007/s10765-005-2365-zCrossRefGoogle Scholar
Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M., and Shakouri, A., Nano Lett. 9, 711 (2009).10.1021/nl8031982CrossRefGoogle Scholar
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A., Phys. Rev. Lett. 96, 045901 (2006).10.1103/PhysRevLett.96.045901CrossRefGoogle Scholar
Mattheiss, L. F., Phys. Rev. B 45, 3252 (1992).10.1103/PhysRevB.45.3252CrossRefGoogle Scholar
Fujii, M., Mimura, A., Hayashi, Shinji, Yamamoto, Y., and Murakami, K., Phys, Rev. Lett., 89, 206805 (2002).10.1103/PhysRevLett.89.206805CrossRefGoogle Scholar
Nakamura, T., Adachi, S., Fujii, M., Miura, K., and Yamamoto, S., Phys. Rev. B 85, 045441 (2012).10.1103/PhysRevB.85.045441CrossRefGoogle Scholar