Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:20:49.636Z Has data issue: false hasContentIssue false

Relaxation Phenomena and Thermodynamics of Liquids at Very High Pressures

Published online by Cambridge University Press:  10 February 2011

W. F. Oliver III*
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, AR 72701, woliver@comp.uark.edu
Get access

Abstract

Complex liquid glass-forming systems ranging from those composed of simple molecules to polymer melts and amorphous polymers have been studied extensively as a function of temperature resulting in a basic understanding of liquid-state dynamics and glass transition phenomenology as these systems are supercooled to the vitreous state. An important aspect of this problem that remains largely unexplored, and that is relevant to the topic of this symposium, involves liquid-state dynamics and vitrification (as well as crystallization) in the regime of high pressure and high density. We describe work on “fragile” to “intermediate strength” simple organic glass-forming liquids where both temperature (T) and pressure (P) are varied. Diamond anvil cells are used to achieve pressures exceeding 10 GPa. Several optical and light scattering techniques are used to explore both static and dynamic properties of these systems. High-pressure Brillouin scattering enables us to model the longitudinal relaxation time in these systems as well as their equations of state. These can now be refined by direct measurements of the pressure dependence of the glass transition, Tg(P). Finally, we summarize depolarized light scattering studies which allow us to compare both the isobaric and isothermal evolution of structural (α) and fast (β) relaxation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Elastohydrodynatnic Lubrication by Cheng, H. S., in the CRC Handbook of Lubrication 2, ed. by Booser, E. R. (CRC Press, Boca Raton, 1983), p. 139; see also the chapter entitledGoogle Scholar
Liquid Lubricants by Klaus, E. E. and Tewksbury, E. J., in the CRC Handbook of Lubrication 2, ed. by Booser, E. R. (CRC Press, Boca Raton, 1983), p. 229.Google Scholar
2 Jayaraman, A., Rev. Mod. Phys. 55, 65 (1983).Google Scholar
3 Piermarini, G. J., Block, S., Barnett, J. D., Forman, R. A., J. Appl. Phys. 46, 2774 (1975);Google Scholar
3 Piermarini, G. J., Block, S., Barnett, J. D., J. Appl. Phys. 44, 5377 (1973).Google Scholar
4 Brugmans, M.J. P. and Vos, W. L., J. Chem. Phys. 103, 2661 (1995).Google Scholar
5 Shimuzu, H., Brody, E. M., Mao, H. K., and Bell, P. M., in Advances in Earth and Planetary Sciences, vol. 12, edited by Akimoto, S. and Manghnani, M. H., (1989), p. 135.Google Scholar
6 Oliver, W. F., Herbst, C. A., and Wolf, G. H., J. Non-Cryst. Solids 131–133, 84 (1991).Google Scholar
7 Oliver, W. F., Herbst, C. A., Lindsay, S. M., and Wolf, G. H., Phys. Rev. Lett. 67, 2795 (1991).Google Scholar
8 Cummins, H. Z., Du, W. M., Fuchs, M., Götze, W., Hildebrand, S., Latz, A., Li, G., and Tao, N. J., Phys. Rev. E 47, 4223 (1993); see also refs. within.Google Scholar
9 Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
10 We use the term “fragile” in the sense of: Angell, C. A., J. Non-Cryst. Solids 102, 205 (1988).Google Scholar
11 Götze, W., see Symposium Proceedings from this Meeting entitled: Glasses and Glass Formers–Current Issues, ed. by Angell, C. A., Egami, T., Kieffer, J., Nienhaus, U., and Ngai, K. L..Google Scholar
12 Li, G., King, H. E. Jr, Oliver, W. F., Herbst, C. A., and Cummins, H. Z., Phys. Rev. Lett. 74, 2280 (1995).Google Scholar
13 Bridgman, P. W., Collected Experimental Papers, (Harvard Univ. Press, Cambridge, 1964).Google Scholar
14 Barnett, J. D. and Bosco, C. D., J. Appl. Phys. 40, 3144 (1969);Google Scholar
Piermarini, G. J., Forman, R. A., and Block, S., Rev. Sci. Instrum. 49, 1061 (1978);Google Scholar
Cook, R. L., Herbst, C. A., and King, H. E. Jr, J. Phys. Chem. 97, 2355 (1993).; H. E. King, Jr, see the article in this proceedings.Google Scholar
15 Slie, W. M. and Madigosky, W. M., J. Chem. Phys. 48, 2810 (1968).Google Scholar
16 Hawley, S., Allegra, J., and Holton, G., J. Acoust. Soc. Am. 47, 137 (1970);Google Scholar
Allegra, J., Hawley, S., and Holton, G., J. Acous. Soc. Am. 47, 144 (1970).Google Scholar
17 Jonas, J., Hasha, D., and Huang, S. A., J. Chem. Phys. 71, 3996 (1989).Google Scholar
18 Lee, S. H., Conradi, M. S., and Norberg, R. E., Phys. Rev. B 40, 12492 (1989).Google Scholar
19 Yarger, J. L., Nieman, R. A., Wolf, G. H., and Marzke, R. F., J. Mag. Res., Ser. A 114, 255 (1995).Google Scholar
20 Johari, G. P. and Whalley, E., Faraday Symp. Chem. Soc. 6, 23 (1972).Google Scholar
21 Questad, D. L., Pae, K. D., Newman, B. A., and Scheinbeim, J. I., J. Appl. Phys. 51, 5100 (1980).Google Scholar
22 Mishima, O. and Whalley, E., J. Chem. Phys. 84, 2795 (1986).Google Scholar
23 Forsman, H., Molecular Phys. 63, 65 (1988).Google Scholar
24 Stevens, J. R., Coakley, R. W., Chau, K. W., and Hunt, J. L., J. Chem. Phys. 84, 1006 (1986).Google Scholar
25 Miles, D., Lee, N., and Kivelson, D., J. Chem. Phys. 90, 5327 (1989).Google Scholar
26 Zaug, J. M., Slutsky, L. J., and Brown, J. M., J. Phys. Chem. 98, 6008 (1994).Google Scholar
27 Munro, R. G., Piermarini, F. J., Block, S., and Holzapfel, W. B., J. Appl. Phys. 57, 165 (1985).Google Scholar
28 Sandberg, O., Andersson, P., and Backström, G., Proc. 7th Symp. Thermophys. Prop., 181 (1977).Google Scholar
29 Herbst, Q. A., Cook, R. L., and King, H. E. Jr, Nature 361, 518 (1993).Google Scholar
30 Oliver, W. F., Herbst, C. A., Lindsay, S. M., and Wolf, G. H., Rev. Sci. Instrum. 63, 1884 (1992).Google Scholar
31 Houck, J., J. Res. Nat. Bur. Stand. Sect. A 78, 617 (1974).Google Scholar
32 Sceats, M. G. and Dawes, J. M., J. Chem. Phys. 83, 1298 (1985).Google Scholar
33 For examples where hypersonic shear modes are observed in liquids see refs. 6 and 7 and Grimsditch, M., Bhadra, R., and Torell, L. M., Phys. Rev. Lett. 62, 2616 (1989).Google Scholar
34 Carroll, P. J. and Patterson, G. D., J. Chem. Phys. 81, 1666 (1984).Google Scholar
35 Vinet, P., Ferrante, J., Rose, J. H., and Smith, J. R., J. Geophys. Res. 92, 9319 (1987).Google Scholar
36 Angell, C. A., Pollard, L. J., and Strauss, W., J. Solution Chem. 1, 517 (1972).Google Scholar
37 DiMarzio, Edmund A., Gibbs, Julian H., Fleming, Paul D. III, and Sanchez, Isaac C., Macromolecules, 9, 763 (1976).Google Scholar
38 Cook, R. L., King, H. E. Jr, Herbst, C. A., and Herschbach, D. R., J. Chem. Phys. 100, 5178 (1994). See also the paper in this symposium by H. E. King, Jr.Google Scholar
39 Herbst, C.A., Cook, R. L., and King, H. E. Jr, J. Non-Cryst. Solids 172–174, 265 (1994).Google Scholar