Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:11:48.368Z Has data issue: false hasContentIssue false

Relaxed Si1−xGex Layers on Simox Avoiding a Lattice Mismatched Heterointerface

Published online by Cambridge University Press:  25 February 2011

B. Holländer
Affiliation:
Inst. fOr Schicht- und lonentechnik, Forschungszentrum J0lich, W-5170 JOlich, FRG
S. Mantl
Affiliation:
Inst. fOr Schicht- und lonentechnik, Forschungszentrum J0lich, W-5170 JOlich, FRG
R. Butz
Affiliation:
Inst. fOr Schicht- und lonentechnik, Forschungszentrum J0lich, W-5170 JOlich, FRG
W. Michelsen
Affiliation:
Inst. fOr Schicht- und lonentechnik, Forschungszentrum J0lich, W-5170 JOlich, FRG
Ch. Dieker
Affiliation:
Inst. fOr Schicht- und lonentechnik, Forschungszentrum J0lich, W-5170 JOlich, FRG
Get access

Abstract

For the first time, Si1 xGex layers on amorphous SiO 2 were produced by modification of the Si surface layer of a SIMOX wafer. We used two alternative methods. An additional Si1.. Gey layer was deposited epitaxially on a SIMOX wafer followed by rapid thermal annealing. Diffusional intermixing of the layers produced a homogeneous Si1 xGex layer on SiO 2. In a second attempt, Ge was implanted into the Si surface layer and thermally treated. In both cases epitaxial Si1 xGex layers on SiO2 with minimum yield values around 9% were obtained. Rutherford backscattering and cross sectional transmission electron microscopy were used to characterize the new structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mii, Y.J., Xie, Y.H., Fitzgerald, E.A., Monroe, Don, Thiel, F.A., Weir, B.E., and Feldman, L.C., Appl. Phys. Lett. 59 (1991) 1611 Google Scholar
[2] Schaffler, F., Többen, D., Herzog, H.-J., Abstreiter, G., and Hollander, B., Semicond. Sci. Technol. 7 (1992) 260 Google Scholar
[3] Kesan, V.P., May, P.G., LeGoues, F.K., and lyer, S.S., J. Cryst. Growth 111 (1991) 936 Google Scholar
[4] Paine, D.C., Howard, D.J., and Stoffel, N.G., J. Electron. Mat. 20 (1991) 735 Google Scholar
[5] Selvakumar, C.R., and Hecht, B., IEEE Electr. Device Lett. 12 (1991) 444 Google Scholar
[6] Doolittle, L.R., Nucl. Instr. Meth. B15 (1986) 277 Google Scholar
[7] Elliman, R.G., Williams, J.S., Brown, W.L., Leiberich, A., Maher, D.M., and Knoell, R.V., Nucl. Instr. Meth. B19/20 (1987) 435 Google Scholar