Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:25:40.219Z Has data issue: false hasContentIssue false

Reliability Implications of Defects in High Temperature Annealed Si/SiO2/Si Structures

Published online by Cambridge University Press:  22 February 2011

W. L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1349
D. M. Fleetwood
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1349
M. R. Shaneyfelt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1349
P. S. Winokur
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1349
R. A. B. Devine
Affiliation:
France Telecom/CNET, B. P. 98, 38243 Meylan, FRANCE
D. Mathiot
Affiliation:
France Telecom/CNET, B. P. 98, 38243 Meylan, FRANCE
I. H. Wilson
Affiliation:
Chinese University of Hong Kong, Hong Kong
J. B. Xu
Affiliation:
Chinese University of Hong Kong, Hong Kong
Get access

Abstract

High-temperature post-oxidation annealing of poly-Si/SiO2/Si structures such as metal-oxidesemiconductor capacitors and metal-oxide-semiconductor field effect transistors is known to result in enhanced radiation sensitivity, increased 1/f noise, and low field breakdown. We have studied the origins of these effects from a spectroscopic standpoint using electron paramagnetic resonance (EPR) and atomic force microscopy. One result of high temperature annealing is the generation of three types of paramagnetic defect centers, two of which are associated with the oxide close to the Si/SiO2 interface (oxygen-vacancy centers) and the third with the bulk Si substrate (oxygen-related donors). In all three cases the origin of the defects may be attributed to out-diffusion of O from the SiO2 network into the Si substrate with associated reduction of the oxide. We present a straightforward model for the interfacial region which assumes the driving force for O out-diffusion is the chemical potential difference of the O in the two phases (SiO2 and the Si substrate). Experimental evidence is provided to show that enhanced hole trapping and interface-trap and border-trap generation in irradiated high-temperature annealed Si/SiO2/Si systems are all related either directly, or indirectly, to the presence of oxygen vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, W. and Brox, M., MRS Bulletin, Vol. XVIII, 36 (1993).Google Scholar
2. Dawes, W.R. Jr, Derbenwick, G.F., and Gregory, B.L., IEEE J. Solid State Circuits, SC–II, 459 (1976).Google Scholar
3. Aslam, M., IEEE Trans. Elect. Dev., ED–34, 2335 (1987).Google Scholar
4. Schwank, J.R. and Fleetwood, D.M., Appl. Phys. Lett., 53, 770 (1988).Google Scholar
5. Fleetwood, D.M. and Scofield, J.H., Phys. Rev. Lett., 64, 579 (1990).Google Scholar
6. Devine, R.A.B., Mathiot, D., Warren, W.L., Fleetwood, D.M., and Aspar, B., Appl. Phys. Lett., 63, 2926 (1993).Google Scholar
7. Winokur, P.S., Schwank, J.R., McWhorter, P.J., Dressendorfer, P.V., and Turpin, D.C., IEEE Trans. Nucl. Sci., NS–31, 1453 (1984).Google Scholar
8. Lenahan, P.M. and Dressendorfer, P.V., 1. Appl. Phys., 55, 3495 (1984).Google Scholar
9. Fleetwood, D.M., Appl. Phys. Lett., 60, 2883 (1992).Google Scholar
10. Fleetwood, D.M., Winokur, P.S., Reber, R.A. Jr, Meisenheimer, T.L., Schwank, J.R., Shaneyfelt, M.R., and Riewe, L.C., J. Appl. Phys., 73, 5058 (1993).Google Scholar
11. Vanheusden, K. and Stesmans, A., J. Appl. Phys., 74, 275 (1993).Google Scholar
12. Warren, W.L., Fleetwood, D.M., Shaneyfelt, M.R., Schwank, J.R., Winokur, P.S., and Devine, R.A.B., Appl. Phys. Lett., 62, 3330 (1993).Google Scholar
13. Carlos, W.E., Z. Phys. Chemie, 151, 227 (1987).Google Scholar
14. Liplin, L., Rowan, L., Reisman, A., and Williams, C.K., J. Electrochem. Soc., 138, 2050 (1991).Google Scholar
15. Devine, R.A.B., Mathiot, D., Warren, W.L., and Fleetwood, D.M., MRS Symp. Proc. Vol. 318 (1994), in press.Google Scholar
16. Muller, S.H., Sprenger, M., Sieverts, E.G., and Ammerlaan, C.A.J., Solid State Commun., 25, 987 (1978).Google Scholar
17. Stesmans, A., Revesz, A.G., and Hughes, H.L., J. Appl. Phys., 69, 175 (1991).Google Scholar
18.When the proper calculations are performed (D. Mathiot, private communication) taking into account O in the Si substrate following oxidation and ramp down, it is found that the Nox (ΔVox) values are one-half that predicted via eqn. (1). To reflect this, we have divided the calculated Vox data by two in Fig. 8.Google Scholar
19. Devine, R.A.B., Jpn. J. Appl. Phys., 31, 4411 (1992).Google Scholar
20. Warren, W.L., Shaneyfelt, M.R., Schwank, J.R., Fleetwood, D.M., Winokur, P.S., Devine, R.A.B., Maszara, W.P., and McKitterick, J.B., IEEE Trans. Nucl. Sci., NS–40, 1755 (1993).Google Scholar
21. Buchanan, D.A. and DiMaria, D.J., J. Appl. Phys., 67, 7439 (1990)Google Scholar
22. Lai, S.K., J. Appl. Phys., 54, 2540 (1983).Google Scholar
23. Thanh, L. Do, Aslam, M., and Balk, P., Solid-State Commun., 29, 829 (1986).Google Scholar
24. Hu, G.J. and Johnson, W.C., J. Appl. Phys., 54, 1441 (1981).Google Scholar
25. Shaneyfelt, M.R., Schwank, J. R., Fleetwood, D.M., Winokur, P.S., Hughes, K.L., and Sexton, F.W., IEEE Trans. Nucl. Sci., NS–37, (1990).Google Scholar
26. Gerardi, G.J., Poindexter, E.H., Caplan, P.J., and Johnson, N.M., Appl. Phys. Lett., 49, 348 (1986).Google Scholar
27. Poindexter, E.H., Semicond. Sci. Technol., 4, 961 (1989).Google Scholar
28. Brower, K.L., Phys. Rev. B42, 3444 (1990).Google Scholar
29. Cartier, E., Stathis, J.H., and Buchanan, D.A., Appl. Phys. Lett., 63, 1510 (1993).Google Scholar
30. Devine, R.A.B., Leray, J.-L., and Margail, J., Appl. Phys. Lett., 59, 2275 (1991).Google Scholar