Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:07:57.381Z Has data issue: false hasContentIssue false

Residual Stresses and Magnetoelastic Coupling in Ultrathin Fe Films Deposited on GaAs(001)

Published online by Cambridge University Press:  14 March 2011

P. Gergaud
Affiliation:
TECSEN, CNRS, FST St Jérôme, Univ Aix-Marseille III, 13397 Marseille, France
C. Lallaizon
Affiliation:
EPSI, UMR CNRS 6627, Bât.11C, Campus de Beaulieu, 35042 Rennes cedex, France
M. Putero
Affiliation:
TECSEN, CNRS, FST St Jérôme, Univ Aix-Marseille III, 13397 Marseille, France
B. Lépine
Affiliation:
EPSI, UMR CNRS 6627, Bât.11C, Campus de Beaulieu, 35042 Rennes cedex, France
O. Thomas
Affiliation:
TECSEN, CNRS, FST St Jérôme, Univ Aix-Marseille III, 13397 Marseille, France
A. Guivarc'h
Affiliation:
EPSI, UMR CNRS 6627, Bât.11C, Campus de Beaulieu, 35042 Rennes cedex, France
Get access

Abstract

The growing interest in the behavior of magnetic thin films on semiconductor substrates is due in part to their potential application in spin-sensitive heterostructure devices. High-quality epitaxial Fe(001) thin films can be grown on GaAs(001) substrates because of the small lattice parameter mismatch (−1.4%). Magnetic measurements performed on Fe films thinner than 3 nm have shown that such films exhibit an in-plane uniaxial magnetic anisotropy although an ideal bcc Fe(001) film should have fourfold symmetry. The source of this uniaxial component remains an open question and one of the mechanisms which may contribute to this is the epitaxial strain, through magnetoelastic coupling. Very small strains anisotropies are able to modify the magnetic anisotropy of iron thin films. Moreover the sign and magnitude of the magnetoelastic coupling seem to depend on the film thickness or film strain [1]. In this study, the strain tensor components in two Fe thin films (1.7 and 3.0 nm thick) has been measured by XRD. The magnetic free energy has been derived, using the strain tensor components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sander, D., Rep. Prog. Phys. 62 (1999) 809.10.1088/0034-4885/62/5/204Google Scholar
2. Lépine, B., Lallaizon, C., Ababou, S., Guivarc'h, A., Députier, S., Filippe, A., Dau, F. Nguyen Van, Schuhl, A., Abel, F. and Cohen, C., J. Crystal Growth, 201, 702 (1999).10.1016/S0022-0248(98)01430-4Google Scholar
3. Kneedler, E.M., Jonker, B.T., Thibado, P.M., Wagner, R.J., Shanabrook, B.V. and Whitman, L.J., Phys Rev B, 56 (1997) 8163.10.1103/PhysRevB.56.8163Google Scholar
4. Lallaizon, C., Lépine, B., Ababou, S., Guivarc'h, A., Députier, S., Abel, F. and Cohen, C. J. Appl. Physics, 86, 5515 (1999).10.1063/1.371553Google Scholar
5. Noyan, I. and Cohen, J., Residual stress (Springer Verlag, Stuttgart, 1987).10.1007/978-1-4613-9570-6Google Scholar
6. Chung, D.H. and Buessem, W.R., The elastic anisotropy of crystals, Vahldiek F.W., Mersol S.A. Plenum Press, 2 (1968) 217.Google Scholar
7. Flanders, P.J., J. Appl. Phys. 63 (1988) 3940.10.1063/1.340582Google Scholar
8. Bochi, G., Ballentine, C. A., Inglefield, H.E., Thompson, C.V., O'Handley, R.C., Hug, H.J., Stiefel, B., Moser, A. and Güntherodt, H.J., Phys. Rev. B, 52, 7311 (1995).10.1103/PhysRevB.52.7311Google Scholar
9. Wedler, G., Waltz, J., Greuer, A. and Koch, R., Phys Rev B, 60 (1999) 313.10.1103/PhysRevB.60.R11313Google Scholar
10. Ruckman, M.W., Joyce, J.J. and Weaver, J.H., Phys Rev B, 33 (1986) 7029.10.1103/PhysRevB.33.7029Google Scholar