Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T10:35:02.515Z Has data issue: false hasContentIssue false

Ripening Mechanisms in Ultrathin Metal Films

Published online by Cambridge University Press:  10 February 2011

Georg Rosenfeld
Affiliation:
Faculty of Applied Physics and Centre of Materials Research (CMO), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, g.rosenfeld@tn.utwente.nl Institut für Physikalische und Theoretische Chemie der Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany
Marcus Essera
Affiliation:
Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
Karina Morgensternat
Affiliation:
Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
George Comsa
Affiliation:
Institut für Physikalische und Theoretische Chemie der Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany
Get access

Abstract

Results of recent experimental model studies on ripening of submonolayer films via Ostwald ripening and dynamic coalescence are described. The experiments have been performed on ensembles of Ag-adatom or vacancy islands on a Ag(111) surface using Scanning Tunneling Microscopy. For Ostwald ripening of adatom islands, deviations from the classical mean-field ripening behaviour are observed which show up as pronounced local correlations in island decay and growth rates. For ripening via dynamic coalescence which is studied for ensembles of vacancy islands, it is found that the increase of the average island size with time in the late-stage regime is correctly described by the classical binary collision model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a recent overview, see: Growth and Properties of Ultrathin Epitaxial Layers, edited by King, D.A. and Woodruff, D.P., The Chemical Physics of Solid Surfaces, Vol. 8 (Elsevier, Amsterdam 1997).Google Scholar
2. Peale, D.R. and Cooper, B.H., J. Vac. Sci. Technol. A 10, 2210 (1992).Google Scholar
3. Cooper, B.H., Peale, D.R., McLean, J.G., Phillips, R., and Chason, E., in: Evolution of Surface and Thin Film Microstrucures, edited by Atwater, H.A., Chason, E., Grabow, M.H., and Lagally, M. (Mater. Res. Soc. Proc. 280, Pittsburgh, 1993) p.37.Google Scholar
4. Wen, J.-M., Chang, S.-L., Burnett, J.W., Evans, J.W., and Thiel, P.A., Phys. Rev. Lett. 75, 1574 (1994).Google Scholar
5. Morgenstern, K., Rosenfeld, G., Poelsema, B., and Comsa, G., Phys. Rev. Lett. 74, 2058 (1995).Google Scholar
6. Wen, J.-M., Evans, J.W., Bartelt, M.C., Burnett, J.W., and Thiel, P.A., Phys. Rev. Lett. 75, 652 (1995).Google Scholar
7. Theis, W., Bartelt, N.C., and Tromp, R., Phys. Rev. Lett. 75, 3328 (1995).Google Scholar
8. Bartelt, N.C., Theis, W., and Tromp, R., Phys. Rev. B 54, 11741 (1996).Google Scholar
9. Morgenstern, K., Rosenfeld, G., and Comsa, G., Phys. Rev. Lett. 76, 2113 (1996).Google Scholar
10. Ichiyama, A., Taganaka, Y., and Ishiyama, K., Phys. Rev. Lett. 76, 4721 (1996).Google Scholar
11. Tanaka, S., Bartelt, N.C., Umbach, C.C., Tromp, R.M., and Blakely, J.M, Phys. Rev. Lett. 78, 3342 (1997).Google Scholar
12. Hannon, J.B., Klünker, C., Giesen, M., Ibach, H., Bartelt, N.C., and Hamilton, J.C., Phys. Rev. Lett. 79, 2506 (1997).Google Scholar
13. Pai, W.W., Swan, A.K., Zhang, Z.Z., and Wendelken, J.F., Phys. Rev. Lett. 79, 3210 (1997).Google Scholar
14. Giesen, M., Schulze-Icking-Konert, G., and Ibach, H., Phys. Rev. Lett. 80, 552 (1998).Google Scholar
15. Morgenstern, K., Rosenfeld, G., Lægsgaard, E., Besenbacher, F., and Comsa, G., Phys. Rev. Lett. 80, 556 (1998).Google Scholar
16. Schulze-Icking-Konert, G., Giesen, M., and Ibach, H., Surf. Sci. 398, 37 (1998).Google Scholar
17. Venables, J.A., Spiller, G.D.T., and Hanbücken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
18. Zinke-Allmang, M., Feldman, L.C., and Grabow, M.H., Surf. Sci. Rep. 16, 337 (1992).Google Scholar
19. Smoluchowski, M. von, Phys. Z. 17, 585 (1916).Google Scholar
20. Stoltze, P., J. Phys, Cond. Mat. 6, 9495 (1994).Google Scholar
21. Rosenfeld, G., Poelsema, B., and Comsa, G. in: Growth and Properties of Ultrathin Epitaxial Layers, edited by King, D.A. and Woodruff, D.P., The Chemical Physics of Solid Surfaces, Vol. 8 (Elsevier, Amsterdam 1997), pp. 66101.Google Scholar
22. Ehrlich, G. and Hudda, F.G., J. Chem. Phys. 44, 1039 (1966).Google Scholar
23. Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
24. Besocke, K.H., Surf. Sci. 181, 145 (1987).Google Scholar
25. Rosenfeld, G., Lipkin, N.N., Wulfhekel, W., Kliewer, J., Morgenstern, K., Poelsema, B., and Comsa, G., Appl. Phys. A 61, 455 (1995).Google Scholar
26. Morgenstern, K., Rosenfeld, G., Poelsema, B., and Comsa, G., Surf. Sci. 352–354, 956 (1996).Google Scholar
27. Morgenstern, K., Dynamik von Nanostrukturen auf Ag(111) - eine rastertunnelmikroskopische Untersuchung mit hoher Zeitauflösung, Dissertation Universitäit Bonn (Berichte des Forschungszentrums Jülich 3278, Jülich, 1996).Google Scholar
28. Wynblatt, P. and Gjostein, N.A., in: Progress in Solid State Chemistry, Vol. 9, edited by McCardin, J.O. and Somorjai, G. (Pergamon, Oxford, 1975) p.21.Google Scholar
29. Rosenfeld, G., Morgenstern, K., and Comsa, G., in: Surface Diffusion: Atomistic and Collective Processes, edited by Tringides, M.C. (NATO-ASI Series B, Vol. 360, Plenum Press, New York, 1997) pp. 361375.Google Scholar
30. McLean, J.G., Krishnamachari, B., Peale, D.R., Chason, E., Sethna, J.P., and Cooper, B.H., Phys. Rev. B 55, 1811 (1997).Google Scholar
31. In the absence of a true attachment barrier, incorporation at island edges may also be rate-controlling if it requires collective (or at least correlated) attachment of several diffusing particles. This is believed to be the origin of attachment-limited ripening of Si-islands on Si(100) where material is added to islands in units of two Si-dimers [7, 8]. For the simple metal surfaces discussed in this paper, this case is not relevant.Google Scholar
32. Wang, S.C. and Ehrlich, G., Phys. Rev. Lett. 70, 41 (1993); ibid., 71, 4174 (1993).Google Scholar
33. Ehrlich, G., Surf. Sci. 331–333, 865 (1995).Google Scholar
34. Liu, C.-L. and Adams, J.B., Surf. Sci. 294, 197 (1993).Google Scholar
35. Stumpf, R. and Scheffler, M., Phys. Rev. Lett. 72, 254 (1994).Google Scholar
36. Villarba, M. and Jonsson, H., Surf. Sci. 317, 15 (1994).Google Scholar
37. Wang, R. and Fichthorn, K., Mol. Simulations 11, 105 (1993).Google Scholar
38. Jacobson, J., Jacobson, K.W., Stoltze, P., and Nørskov, J.J., Phys. Rev. Lett. 74, 2295 (1995).Google Scholar
39. Liu, S. and Metiu, H., Surf. Sci. 359, 245 (1996).Google Scholar
40. Schlößer, D.C., Dynamisches Verhalten von Nanoclustern auf der Kupfer(111)-Oberfläche, Dissertation Universität Bonn (Berichte des Forschungszentrums Jülich 3475, Jülich, 1997).Google Scholar
41. Marqusee, J.A., J. Chem. Phys. 81, 976 (1984).Google Scholar
42. Rogers, T.M. and Desai, R.C., Phys. Rev. B 39, 11956 (1989).Google Scholar
43. Ardell, A.J., Phys. Rev. B 41, 2554 (1990).Google Scholar
44. Yao, J.H., Elder, K.R., Guo, H., and Grant, M., Phys. Rev. B 45, 8173 (1992); Phys. Rev. B 47, 14110 (1993); Physica A 204, 770 (1994).Google Scholar
45. Chakrabarti, A., Toral, R., and Gunton, J.D., Phys. Rev. E 47, 3025 (1993).Google Scholar
46. Rosenfeld, G., Morgenstern, K., Beckmann, I., Wulfhekel, W., Lægsgaard, E., Besenbacher, F., and Comsa, G., Surf. Sci. 402–404, 401 (1998).Google Scholar
47. Morgenstern, K., Rosenfeld, G., and Comsa, G., to be published.Google Scholar
48. Zheng, Q. and Gunton, J.D., Phys. Rev. A 39, 4848 (1989).Google Scholar
49. Lifshitz, I.M. and Sloyzov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
50. Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
51. Herring, C., J. Appl. Phys. 21, 301 (1950).Google Scholar
52. Mullins, W.W., J. Appl. Phys. 28, 333 (1957).Google Scholar
53. Siclen, C. DeW. Van, Phys. Rev. Lett. 75, 1574 (1995).Google Scholar
54. Khare, S.V., Bartelt, N.C., and Einstein, T.L., Phys. Rev. Lett. 75, 2148 (1995).Google Scholar
55. Nichols, F.A. and Mullins, W.W., J. Appl. Phys. 36, 1826 (1965); Trans. AIME 233, 1844 (1965); F.A. Nichols, J. Appl. Phys. 37, 2805 (1966).Google Scholar
56. SchlößBer, D.C., Verheij, L.K., Rosenfeld, G., and Comsa, G., to be published.Google Scholar
57. Bogicevic, A., Liu, S., Jacobson, J., Lundquist, B., and Metiu, H., Phys. Rev. B 57, R9459 (1998).Google Scholar
58. Eßler, M., Morgenstern, K., Rosenfeld, G., and Comsa, G., Surf. Sci. 402–404, 341 (1998).Google Scholar
59. Chandrasekhar, S., Rev. Mod. Phys. 15, 1 (1943).Google Scholar
60. Botet, R. and Jullien, R., J. Phys. A: Math. Gen. 17, 2517 (1984).Google Scholar
61. Meakin, P., Physica A 165, 1 (1990).Google Scholar
62. Sholl, D.S. and Skodje, R.T., Physica A 231, 631 (1996).Google Scholar