Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T05:45:56.806Z Has data issue: false hasContentIssue false

Room temperature ferromagnetism of Fe-doped ZnO and MgO thin films prepared by ink-jet printing

Published online by Cambridge University Press:  10 May 2012

Mei Fang
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Wolfgang Voit
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Adrica Kyndiah
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Yan Wu
Affiliation:
Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan, 430074, P.R.China.
Lyubov Belova
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
K. V. Rao
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Get access

Abstract

Room temperature magnetic properties of un-doped, as well as 10 at.% Fe-doped ZnO and MgO single-pass layer of ink-jet printed thin films have been investigated to obtain insight into the role of the band gaps and mechanisms for the origin of ferromagnetic order in these materials. It is found that on doping with Fe, the saturation magnetization is enhanced by several-fold in both systems when compared with the respective un-doped thin films. For a “28 nm thick film of Fe-doped ZnO (Diluted Magnetic Semiconductor, DMS) we observe an enhanced moment of 0.465μB /Fe atom while it is around 0.111μB/Fe atom for the doped MgO (Diluted Magnetic Insulator, DMI) film of comparable thickness. Also, the pure ZnO is far more ferromagnetic than pure MgO at comparable low film thicknesses which can be attributed to defect induced magnetism originating from cat-ion vacancies. However, the film thickness dependence of the magnetization and the defect concentrations are found to be significantly different in the two systems so that a comparison of the magnetism becomes more complex for thicker films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohno, H., Science 281, 951956 (1998).Google Scholar
2. Bonanni, A. and Dietl, T., Chemical Society Reviews 39, 528539 (2010).Google Scholar
3. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M. O., Johansson, B., and Gehring, G. A., Nature Materials 2, 673677 (2003).Google Scholar
4. Ramachandran, S., Narayan, J., and Prater, J. T., Applied Physics Letters 90, 115321 (2007).Google Scholar
5. Coey, J. M. D., Venkatesan, M., and Fitzgerald, C. B., Nat Mater 4, 173179 (2005).Google Scholar
6. Coey, J. M. D., Solid State Sciences 7, 660667 (2005).Google Scholar
7. Yang, K., Wu, R., Shen, L., Feng, Y. P., Dai, Y., and Huang, B., Physical Review B 81, 125211 (2010).Google Scholar
8. Hong, N. H., Sakai, J., Poirot, N., and Brizé, V., Physical Review B - Condensed Matter and Materials Physics 73, 14 (2006).Google Scholar
9. Adeagbo, W. A. and et al. ., Journal of Physics: Condensed Matter 22, 436002 (2010).Google Scholar
10. Xu, Q., Schmidt, H., Zhou, S., Potzger, K., Helm, M., Hochmuth, H., Lorenz, M., Setzer, A., Esquinazi, P., Meinecke, C., and Grundmann, M., Applied Physics Letters 92, 082508 (2008).Google Scholar
11. Martínez-Boubeta, C., Beltrán, J. I., Balcells, L., Konstantinović, Z., Valencia, S., Schmitz, D., Arbiol, J., Estrade, S., Cornil, J., and Martínez, B., Physical Review B - Condensed Matter and Materials Physics 82 (2010).Google Scholar
12. Araujo, C. M., Kapilashrami, M., Jun, X., Jayakumar, O. D., Nagar, S., Wu, Y., Arhammar, C., Johansson, B., Belova, L., Ahuja, R., Gehring, G. A., and Rao, K. V., Applied Physics Letters 96, 232505–3 (2010).Google Scholar
13. Dietl, T., Haury, A., and D’Aubigné, Y. M., Physical Review B - Condensed Matter and Materials Physics 55 (1997).Google Scholar
14. Xu, X. H., Blythe, H. J., Ziese, M., Behan, A. J., Neal, J. R., Mokhtari, A., Ibrahim, R. M., Fox, A. M., and Gehring, G. A., New Journal of Physics 8, 135 (2006).Google Scholar
15. Pearton, S. J., Norton, D. P., Ivill, M. P., Hebard, A. F., Zavada, J. M., Chen, W. M., and Buyanova, I. A., IEEE Transactions on Electron Devices 54, 10401048 (2007).Google Scholar
16. Singh, M., Haverinen, H. M., Dhagat, P., and Jabbour, G. E., Advanced Materials 22, 673685 (2010).Google Scholar
17. Wu, Y., Rao, K. V., Voit, W., Tamaki, T., Jayakumar, O. D., Belova, L., Liu, Y. S., Glans, P. A., Chang, C. L., and Guo, J. H., IEEE Transactions on Magnetics 46, 21522155 (2010).Google Scholar
18. Wu, Y., Zhan, Y., Fahlman, M., Fang, M., Rao, K. V., and Belova, L., in ’In-situ’ solution processed room temperature ferromagnetic MgO thin films printed by inkjet technique, (Mater. Res. Soc. Proc. 1292, Boston, MA, 2010,) pp. 105-109.Google Scholar
19. Shannon, R., Acta Crystallographica Section A 32, 751767 (1976).Google Scholar
20. Kapilashrami, M., Xu, J., Strom, V., Rao, K. V., and Belova, L., Applied Physics Letters 95, 033104–3 (2009).Google Scholar
21. Straumal, B.B, Mazilkin, A. A., Protasova, S. G., Myatiev, A.A., Straumal, P.B., Gisela Schütz, , Aken, P.A., Goering, E. and Baretzky, B., Physical Review B 79, 205206 (2009).Google Scholar