Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T09:37:53.919Z Has data issue: false hasContentIssue false

Ruthenium Oxide Electrodeposition on Titanium Interdigitated Microarrays for Energy Storage

Published online by Cambridge University Press:  27 February 2013

K. Armstrong
Affiliation:
Institut National de la Recherche Scientifique, 1650 Blvd Lionel-Boulet, Varennes, QC, Canada J3X 1S2
T.M. Dinh
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes, LAAS-CNRS, 7 av du Colonel Roche, 31077 Toulouse Cedex 4, France.
D. Pech
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes, LAAS-CNRS, 7 av du Colonel Roche, 31077 Toulouse Cedex 4, France.
M. Brunet
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes, LAAS-CNRS, 7 av du Colonel Roche, 31077 Toulouse Cedex 4, France.
J. Gaudet
Affiliation:
Institut National de la Recherche Scientifique, 1650 Blvd Lionel-Boulet, Varennes, QC, Canada J3X 1S2
D. Guay
Affiliation:
Institut National de la Recherche Scientifique, 1650 Blvd Lionel-Boulet, Varennes, QC, Canada J3X 1S2
Get access

Abstract

The electrodeposition of hydrated ruthenium dioxide (hRuO2) on Ti interdigitated current collectors deposited onto silicon substrate has been investigated with the objective of preparing a high capacitance and high power micro-supercapacitor (µ-SC) device. Ti current collectors were synthesised by typical photolithography processes, and hRuO2 thin films were electrodeposited from ruthenium chloride precursors. Device specific capacitances exceeding 20 mF·cm−2 were obtained, and more than 80 % of that value is retained even at scan rate as high as 1 V∙s−1 in 0.5 M H2SO4. The mean specific power per active surface area of the device is 368 mW·cm−2. The device is stable and 90% of the initial capacity is retained after 105 cycles (1 V potential window). The characteristic response time of the hRuO2 µ-SC is 250 ms, with low ESR (0.61 Ω cm−2) and EDR (0.07 Ω cm−2) values. All these characteristics demonstrate the potential of such µ-SC devices to be part of the next generation of micro-supercapacitors.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z. L., Adv. Mater. 24, 280285(2012).CrossRefGoogle Scholar
Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishing, New-York, 1999).CrossRefGoogle Scholar
Salot, R. et al. ., Appl. Surf. Sci. 256, 5457 (2009).CrossRefGoogle Scholar
Simon, P. and Gogotsi, Y., Nature Mat. 7, 845854 (2008).CrossRefGoogle Scholar
Lockhande, C.D., Dubal, D.P., Joo, O.-S., Curr. Appl. Phys. 11, 255270 (2011).CrossRefGoogle Scholar
Olthuis, W., Streekstra, W. and Bergveld, P., Sens. Actuator B 2425, 252256 (1995).CrossRefGoogle Scholar
Rard, J. A, Chem. Rev. 85, 139 (1985).CrossRefGoogle Scholar
Hu, C.-C., Chang, W.-C. and Chan, K.-H., J. Electrochem. Soc. 151, A281A290 (2004).CrossRefGoogle Scholar
Yoon, Y.S. et al. ., J. Vac. Sci. Technol. B 21, 949 (2003)CrossRefGoogle Scholar
Tsai, D.S. et al. ., Electrochim. Acta 55, 5768 (2010). CrossRefGoogle Scholar
Soudan, P., Gaudet, J., Guay, D., Bélanger, D. and Schulz, R., Chem. Mater. 14, 12101215 (2002). CrossRefGoogle Scholar
Pech, D. et al. ., J. Power Sources, submitted.Google Scholar
Pech, D., Brunet, M., Taberna, , Simon, P., Fabre, N., Mesnilgrente, F., Conédéra, V. & Durou, H., J. Power Sources 195, 12661269 (2010).CrossRefGoogle Scholar
Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.-L. and Simon, P., Nature Nanotech 5, 651654 (2010). CrossRefGoogle Scholar
Shao-Horn, Y., Appl. Phys. Lett. 88, 083104 (2006).Google Scholar
Taberna, P. L., Simon, P. and Fauvarque, J. F., J. Electrochem. Soc. 150, A292A300 (2003). CrossRefGoogle Scholar