Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T07:46:49.231Z Has data issue: false hasContentIssue false

Sacrificial Layer and Supporting Layer Techniques for the Fabrication of Ultra-Thin Free-Standing PEDOT:PSS Nanosheets

Published online by Cambridge University Press:  13 February 2012

Francesco Greco
Affiliation:
Center for MicroBioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Alessandra Zucca
Affiliation:
Center for MicroBioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy Biorobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Silvia Taccola
Affiliation:
Center for MicroBioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy Biorobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Arianna Menciassi
Affiliation:
Center for MicroBioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy Biorobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Paolo Dario
Affiliation:
Center for MicroBioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy Biorobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Virgilio Mattoli
Affiliation:
Center for MicroBioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Get access

Abstract

Aim of this work was to realize free-standing conductive nanofilms having very large surface area with typical nano-scale thickness (40-120 nm) by modifying existing approaches for nanostructured thin films assembly. We tested and optimized two different fabrication methods for the obtainment of free-standing conductive ultra-thin nanosheets based on the conductive polymer poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS). Supporting Layer and Sacrificial Layer techniques permitted the obtainment of single layer nanofilms that can be released in water and of LbL multilayer nanosheets (PEDOT:PSS/Polyelectrolytes) that can be released in acetone, respectively. Here we describe the details of both the proposed fabrication methods and compare the properties of the realized nanosheets in terms of thickness, contact angle and conductivity. Interestingly, the realized free-standing nanosheets, despite their low thickness, are very robust and compliant while maintaining their structure and functionality. Possible applications are foreseen in the field of sensing and actuation, as well as in the biomedical field, e.g. as smart conductive substrates for cell culturing and stimulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujie, T., Okamura, Y. and Takeoka, S., Adv. Mater. 19, 35493553 (2007).Google Scholar
2. Okamura, Y., Utsunomiya, S., Suzuki, H., Niwa, D., Osaka, T. and Takeoka, S., Colloids Surf., A 318, 184190 (2008).Google Scholar
3. Decher, G., Science, 277 12321237 (1997).Google Scholar
4. De Longchamp, D. M., Kostantin, M. and Hammond, P. T., Chem. Mater. 15, 15751586 (2003).Google Scholar
5. Choi, K. S., Liu, K. F., Choi, J. S. and Seo, T. S., Langmuir 26, 1290212908 (2010).Google Scholar
6. Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P. and Mattoli, V., Soft Matter 7, 10642 (2011).Google Scholar
7. Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U. and Reuter, K., PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Boca Raton, USA, 2010).Google Scholar
8. Bolin, M. H., Svennersten, K., Wang, X., Chronakis, I. S., Richter-Dahlfors, A., Jager, E. W. H. and Berggren, M., Sens. Actuators, B 142, 451 (2009).Google Scholar
9. Svennersten, K., Bolin, M. H., Jager, E. W. H., Berggren, M. and Richter-Dahlfors, A., Biomaterials 30, 6257 (2009).Google Scholar
10. Taniguchi, M., Pieracci, J. P. and Belfort, G., Langmuir 17, 43124315 (2001).Google Scholar
11. Yoo, D., Shiratori, S. S. and Rubner, M. F.. Macromolecules 31, 43094318 (1998).Google Scholar
12. Cruz-Cruz, I., Reyes-Reyes, M., Aguilar-Frutis, M. A., Rodriguez, A. G. and López-Sandoval, R., Synth. Met. 160, 15011506 (2010).Google Scholar