Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T05:31:04.891Z Has data issue: false hasContentIssue false

Sb3Zn4, a promising new thermoelectric material. Elaboration and caracterisation

Published online by Cambridge University Press:  21 March 2011

V. Izard
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée UMR - CNRS 5617 Université Montpellier II -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
M.C. Record
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée UMR - CNRS 5617 Université Montpellier II -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
J. Haines
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée UMR - CNRS 5617 Université Montpellier II -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
J.C. Tedenac
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée UMR - CNRS 5617 Université Montpellier II -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
Get access

Extract

Sb-Zn alloys have interesting thermoelectric properties. Sb3Zn4 is a high performance ptype thermoelectric material appearing as a promising substitute for PbTe due to a higher factor of merit, ZT=1.3 at 673K [1] with the advantage of being Pb free. The preparation of the Sb3Zn4 compound is, however, not without problems. Even if some authors reported measurements on a single-phased material or single crystals [1,2], others described it as multi-phased alloy giving confused explanations for this result based on the existence of metastabilities due to strong interactions in the liquid phase [3,4].

Hence, the knowledge of a very trustful phase diagram of the Sb-Zn sytem is indispensable. As the previous published data on this system were discordant, we have reinvestigated it and from our results we have elaborated and characterised the thermoelectric compound Sb3Zn4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Caillat, T., Fleurial, J.P. and Borshchevsky, A., J. Phys. Chem. Solids, 58, 1119 (1997)Google Scholar
[2] Psarev, V.I. and Kostur, N.L., Izv. Vyssh. Uchebn. Zaved., Fiz., 10(2), 3438 (1967)Google Scholar
[3] Dobryden, K.A., Inorg. Mater, 19(4), 494501 (1983)Google Scholar
[4] Tapiero, M., Tarabichi, S., Gies, J.G., Noguet, C., Zielinger, J.P., Joucla, M., Loison, J.L. and Robinot, M., Sol. Enery Mater., 12, 257 (1985)Google Scholar
[5] Massalski, T.B., Binary Phase Diagram (CD-ROM), ASM International (1996)Google Scholar
[6] Vuillard, G. and Piton, J.P., Cr. Acad. Sci. Paris, 263, 1018 (1966)Google Scholar
[7] Takei, T., Sci. Rep. Tohoku, Univ., 16, 1031 (1927)Google Scholar
[8] Adjadj-Bouharkat, F, PhD Thesis, Université Claude Bernard Lyon1, France, 1995 Google Scholar
[9] Mayer, H.W., Mikhail, I. and Schubert, K., J. less. Common Met., 59, 43 (1978)Google Scholar
[10] Kim, S.G., Mazin, I.I. and Singh, D.J., Phys. Rev.B, 57(11), 61996203 (1998)Google Scholar
[11] Ugai, Ya. A., Averbakh, E.M. and Lavrov, V.V., Sov. Phys. Solid State, 4, 2393 (1963)Google Scholar
[12] Spitzer, D., J.Phys. Chem. Solids, 31, 19 (1970)Google Scholar
[13] Zhu, T. J., Zhao, X. B., Yan, M., Hu, S.H., Li, T. and Zhou, B.C., Mater. Letters, 46, 44 (2000)Google Scholar
[14] Izard, V., Record, M.C., Tedenac, J.C. and Fries, S.G., Calphad, to be publishedGoogle Scholar
[15] Koneska, S. and Mavrodiev, G., Fizica, 12(1), 137142 (1980)Google Scholar