Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:02:33.218Z Has data issue: false hasContentIssue false

Scaling Effects in Al72Mn22Si6 Quasicrystals Deduced from the Pressure and Temperature Dependence of the Resistance

Published online by Cambridge University Press:  17 March 2011

John K. Vassiliou
Affiliation:
Department of Physics, Villanova University, Villanova, PA 19085
Jens W. Otto
Affiliation:
Joint Research Center for the European Commission, B-1049 Brussels, Belgium
A. Pothireddy
Affiliation:
Department of Physics, Villanova University, Villanova, PA 19085
E. A. Simons
Affiliation:
Department of Physics, Villanova University, Villanova, PA 19085
Get access

Abstract

X-ray diffraction and resistivity measurements on the Al72Mn22Si6 (Al-Mn-Si) rapidly quenched alloy are reported. The x-ray pattern shows that the alloy is essentially single phase, with a little mixture of unreacted Al. The peaks can be indexed using icosahedral vectors in the six dimensional space Z6. The resistance of thin ribbons of Al72Mn22Si6 quasicrystals has been measured as a function of temperature between 1.4 and 300 K at fixed pressures in the range 0 to 15 Kbar. Below 40 K, the resistance increases with decreasing temperature, and below 14 K, the conductivity varies as T1/2. This result is in agreement with the scaling and localization models in which spatial disorder and electron-electron correlation effects determine the electronic transport properties of the material. The value of the magnetoresistance measured at 60 KGauss and 0.34 K agrees qualitatively with the predictions of the above models. The pressure dependence of the correlation gap and the resistivity suggests that the system is in the strong coupling limit. In this regime, the functional dependence of the correlation energy on resistivity is Δ ~ ρ-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harris, R. and Strom-Olson, J. O., in Springer-Verlag, edited by Guntherodt, H. J. and Beck, H.,Vol. 46, 141 (1981) and references therein.Google Scholar
2. Williams, W. D. and Giordano, N., Phys. Rev. B 33, 8146 (1986); A. E. White, M. Tinkham, W. J. Skopkol and D. C. Flanders, Phys. Rev. Lett. 48, 1752 (1982).Google Scholar
3. Cochran, R. W. and Strom-Olsen, J. O., Phys. Rev. B. 29, 1088 (1984).Google Scholar
4. McMillan, W. L., Phys. Rev. B 24, 2739 (1981).Google Scholar
5. Grest, G. S. and Lee, P.A., Phys. Rev. Lett. 50, 693 (1983).Google Scholar
6. Abrahams, E., Anderson, P. W., Licciardello, D. C. and Ramakrishnan, T. V., Phys. Rev. Lett. 42, 6763 (1979).Google Scholar
7. Al'tshuler, B. L. and Aronov, A. A., Zh. Eksp. Teor. Fiz. 77, 2028 (1979) [Sov. Phys. JETP 50, 968 (1979)].Google Scholar
8. Dunlap, R. A., Stroink, G., Dini, K. and Jones, D. F., J. Phys. F: Met. Phys. 16, 1247 (1986).Google Scholar
9. Anlage, S. M., Johnson, W. L., Cotts, E. J., Follstaedt, D. M. and Knapp, J. A., Phys. Rev. B 38, 7802 (1988).Google Scholar
10. Pierce, S. J., Poon, S. J., Guo, Q., Science 261, 737 (1993).Google Scholar
11. Pierce, F. S., Poon, S. J. and Biggs, B. D., Phys. Rev. Lett. 70, 3919 (1993).Google Scholar
12. Klein, T., Berger, C., Mayou, D. and Cyrot-Lackmann, F., Phys. Rev. Lett. 66, 2907 (1991).Google Scholar
13. Mayou, D., Berger, C., Cyrot-Lackmann, F., Klein, T. and Lanco, P., Phys. Rev. Lett. 70, 3915 (1993).Google Scholar
14. Kimura, K., Iwahashi, H., Hasimoto, T. and Takeuchi, S., In Quasicrystals and Incomensurate Structures in Condensed Matter ed. Jacaman, M. J., Romeu, D., Castano, V. and Gomez, A., World Scientific, Singapore, p532 (1990).Google Scholar
15. Bendersky, L. A. and Kaufman, M. J., Phil. Mag. B 53, L75 (1986); C. H. Chen and H. S.Chen, Phys. Rev. B 33, 2814 (1986).Google Scholar
16. Chu, C. W., Smith, T. F. and Gardener, W. E., Phys. Rev. Lett. 20, 198 (1968).Google Scholar
17. Sawaok, A. and Kawai, N., J. Appl.Phys. 9, 353 (1970).Google Scholar
18. Bridgman, P. W., The Physics of High Pressure (G. Bell and Sons, London, 1949), pp. 5156; J. K. Vassiliou and J. C. Jamieson, Rev. Sci. Instrum. 51, 1577 (1980).Google Scholar
19. Cahn, J. W., Shechtman, D., Gratias, D., J. Mat.Res. 1, 13 (1986).Google Scholar
20. Robertson, J. L., Misenheimer, M. E., Moss, S. C. and Bendersky, L. A., Actametall. Vol. 34, 2177 (1986).Google Scholar
21. Altshuler, B. L. and Aronov, A. G., Solid State Commun. 30, 115 (1979).Google Scholar
22. Dynes, R. C. and Garno, J. P., Phys. Rev. Lett. 46, 137 (1981).Google Scholar
23. Hertel, G., Bishop, D. J., Spencer, E. G., Rowell, J. M. and Dynes, R. C., Phys. Rev. Lett. 50, 743 (1983).Google Scholar
24. Altshuler, B. L., Aronov, A.G., Larkin, A. I. and Khmelnitzkii, D. E., Zh. Eksp. Teor. Fiz. 81, 768 (1981) [Sov. Phys. JETP 54, 411 (1981)].Google Scholar
25. Lee, P. A. and Ramakrishnan, T. V., Phys. Rev. B 26, 4009 (1982).Google Scholar