Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:01:37.658Z Has data issue: false hasContentIssue false

Scaling of Island Size Distributions in the Growth of Ni on GaAs(110)

Published online by Cambridge University Press:  21 February 2011

P. E. Quesenberry
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430
P. N. First
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430
Get access

Abstract

Island size distributions have been derived from scanning tunneling microscope (STM) images of Ni deposited on cleaved GaAs(110) at room temperature and above. For submonolayer coverages, this system forms 3-dimensional (3-D) reacted islands with the degree of reaction dependent upon the growth temperature. As has been found for other systems, the average island size (sαυ) increases with temperature. The high temperature data (∼ 150° C) shows two distinct island types, each with substantially different average size. The island size distributions have maxima at the smallest island sizes. For different coverages, plots of the area-normalized island size distributions versus the scaled variable s/sαυ show significant differences. However, above a cutoff value for s/sαυ the distributions can be renormalized to fall on a common curve. These characteristics and direct atomic-scale evidence are consistent with nucleation of islands via adatom-substrate exchange, but the temperature dependence of the total island density appears to be inconsistent with this being the only first-order rate process taking place.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sands, T., Palmstrøm, C. J., Harbison, J. P., Keramidas, V. G., Tabatabaie, N., Cheeks, T. L., Ramesh, R., and Silberberg, Y., Mater. Sci. Rep. 5, 99 (1990).Google Scholar
2 Marshall, E. D. and Murakami, M., in Contacts To Semiconductors: Fundamentals and Technology, edited by Brillson, L. J., (Noyes Publications, Park Ridge, New Jersey, U.S.A., 1993).Google Scholar
3 Xu, F., Joyce, J. J., Ruckman, M. W., Chen, H.-W., Boscherini, F., Hill, D. M., Chambers, S. A., and Weaver, J. H., Phys. Rev. B 35, 397 (1987).Google Scholar
4 Idzerda, Y. U., Elam, W. T., Jonker, B. T., and Prinz, G. A., Phys. Rev. Lett. 62, 2480 (1989).Google Scholar
5 Egelhoff, W. F., Steigerwald, D. A., Rowe, J. E., and Bussing, T. D., J. Vac. Sci. Technol. A 6, 1495 (1988).Google Scholar
6 Kendelewicz, T., Cao, R., Miyano, K., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. A 6, 749 (1989).Google Scholar
7 Landesman, J. P., Jezequel, G., Olivier, J., Larive, M., Thomas, J., Taleb-Ibrahimi, A., and Bonnet, J. E., J. Vac. Sci. Technol. B 9, 2122 (1991).Google Scholar
8 Bartelt, M. C. and Evans, J. W., Phys. Rev. B 46, 12675 1992).Google Scholar
9 Ratsch, C., Zangwill, A., Šmilauer, P., and Vvedensky, D. D., Phys. Rev. Lett. 72, 3194 (1994).Google Scholar
10 Ratsch, C., Šmilauer, P., Zangwill, A., and Vvedensky, D. D., Surf. Sci. 329, L599 (1995).Google Scholar
11 Bales, G. S. and Chrzan, D. C., Phys. Rev. B 50, 6057 (1994).Google Scholar
12 Schroeder, M. and Wolf, D. E., Phys. Rev. Lett. 74, 2062 (1995).Google Scholar
13 Stroscio, J. A. and Pierce, D. T., Phys. Rev. B 49, 8522 (1994).Google Scholar
14 Jiang, Q., Chan, A., and Wang, G. C., Phys. Rev. B 50, 11116 (1994).Google Scholar
15 Zangwill, A. and Kaxiras, E., Surf. Sci. 326, L483 (1995).Google Scholar
16 Quesenberry, P. E. and First, P. N., submitted to Phys. Rev. B (1996).Google Scholar