Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:13:10.571Z Has data issue: false hasContentIssue false

The Scientist in the Sandbox: Complexity and Dynamics in Granular Flow

Published online by Cambridge University Press:  03 September 2012

R. P. Behringer*
Affiliation:
Department of Physics and Center for Nonlinear and Complex Systems, Duke University
Get access

Extract

Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, and fractional Brownian motion provide examples. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules; in particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. Nonlinear Dynamics, Mathematics, Molecular Dynamics, and Condensed Matter Physics as well as traditional Engineering fields have all contributed to recent insights for these phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For a review see Jaeger, H.M. and Nagel, S. R., Science 255, 15231531 (1992).Google Scholar
2 Campbell, C. S., Ann. Rev. Fluid Mech. 22 5792 (1990).Google Scholar
3 For a recent review see Jackson, R., “Some Mathematical and Physical Aspects of Continuum Models for the Motion of Granular Materials”, in The Theory of Dispersed Multiphase Flow, R. Meyer ed., Academic Press (1983).Google Scholar
4 For a review see Behringer, R. P., Nonlinear Science Today, 3, 1 (1993).Google Scholar
5 Bagnold, R. A., The Physics of Blown Sand and Desert Dunes, Chapman and Hall, London, 1954.Google Scholar
6 Werner, B. T. and Gillespie, D. T., preprint, (1993).Google Scholar
7 McNamara, S. and Young, W. R., Phys. Fluids A 4 496504 (1992); Phys. Fluids A 5 34-45 (1993).Google Scholar
8 Bak, P., Tang, C., and Wiesenfeld, K., Phys. Rev. Lett. 59, 381384 (1987). H. M. Jaeger, C. Liu, and S. R. Nagel, Phys. Rev. Lett. 62, 40-43 (1989). G. Held et al. Phys. Rev. Lett. 65, 1120-1123 (1990).Google Scholar
9 Schofield, A. N. and Wroth, C. P., Critical State Soil Mechanics, McGraHill Publishing Co. 1968.Google Scholar
10 Jenike, A. W., Bulletin of the University of Utah Engineering Experiment Station No. 108, (1961) and No. 123 (1964, seventh printing 1976).Google Scholar
11 Reynolds, O., Phil. Mag. 20 469481 (1885).Google Scholar
12 Schaeffer, D. G., J. Diff. Eq. 66, 19 (1987). E. B. Pitman and D. G. Schaeffer, Comm. Pure Appl. Math. 40, 421 (1987). D. G. Schaeffer, M. Shearer, and E. B. Pitman, SIAM J. Appl Math. 50, 33-47 (1990).Google Scholar
13 Hettler, A. and Vardoulakis, I., Géotechnique 34, 183197 (1984).Google Scholar
14 Baxter, G. W., Leone, R. and Behringer, R. P., Europhysics Lett. 21, 569574 (1993).Google Scholar
15 Mandelbrot, B. B. and Wallis, J. R., Water Resour. Res. Ser. 4 909918 (1968). Jens Feder Fractals, Plenum, New York, 1988.Google Scholar
16 Liu, C.-h. and Nagel, S. R., Phys. Rev. Lett. 68 23012304 (1992).Google Scholar
17 Drescher, A. and Jong, G. De Josselin De, J. Mech. Phys. Solids 20 337351 (1972). T. Travers, D. Bideau, A Gervois, J. P. Troadec and J. C. Messager, J. Phys. A. 19, L1033-L1038 (1986).Google Scholar
18 Haff, P. K., J. Fluid Mech. 134, 401430 (1983).S. Ogowa in Proceedings US-Japan Seminar on Continuum-Mechanical and Statitical Approaches in the Mechanics of Granular Materials, S. C. Cowin and M. Satake eds, Gakujutsu Bunker Fukyukai, Tokyo, Japan, 1978. J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130, 186-202 (1983)Google Scholar
19 Drake, T. G., J. Geophys. Research 95, 8681 (1990).Google Scholar
20 Evesque, P. and Rajchenbach, J., Phys. Rev. Letters 62, 44 (1989).Google Scholar
21 Douady, S., Fauve, S. and Laroche, C., Europhysics Lett. 8, 621627 (1989).Google Scholar
22 Melo, F., Umbanhower, P., and Swinney, H., Phys. Rev. Lett. 72, 172 (1994).Google Scholar
23 Clement, E., Duran, J., and Rajchenbach, J., Phys. Rev. Lett. 69, 11891192 (1992).Google Scholar
24 Pak, H. K. and Behringer, R. P., Phys. Rev. Lett. 71, 1832 (1993); in the Proceedings of the First International Conference on chaos, p. 91, ed. H. Lee (1993).Google Scholar
25 Pak, H.K. and Behringer, R.P., Nature 371, 231 (1994).Google Scholar
26 Pak, H.K., Doorn, E. Van, and Behringer, R.P., to be published.Google Scholar
27 Michalowski, R. L., Powder Tech., 39, 29 (1984); A. Drescher, T.W. Cousens, and P.L. Bransby, Géotechnique 28, 27 (1978).Google Scholar
28 Baxter, G. W., Behringer, R. P., Faggert, T. and Johnson, G. A., Phys. Rev. Lett. 62, 28252828 (1989); in Two Phase Flows and Waves, D. D. Joseph and D. G. Schaefer eds, pp. 1-29, Springer, 1990;Google Scholar
29 Baxter, G. W. and Behringr, R. P., Phys. Rev. A 42, 10171020 (1990); Physica D 51, 465-471 (1991).Google Scholar
30 Evesque, P., Shaking Powders and Grains, Contemporary Physics 33, 245261 (1992).Google Scholar
31 Faraday, M., Phil. Trans. R. Soc. Lond. 121, 299 (1831).Google Scholar
32 Savage, S. B., J. Fluid Mech. 194, 457478 (1988).Google Scholar
33 Taguchi, Y-h., Phys. Rev. Lett. 69 1367 (1992). J. A. C. Gallas, H. J. Herrmann, and S. Sokolowski, Phys. Rev. Lett. 69, 1371-1374 (1992). P. A. Thompson, Computer simulations in Condensed Matter Physics VI, D. P. Landau, K. K. Mond, and H. B. Schuttler eds. Springer, 1993.Google Scholar
34 Cundall, P. A. and Strack, O. D. L., Géotechnique 29, 47 (1979). P. K. Haff and B. T. Werner, Powder Tech. 48, 239-245 (1986). O. R. Walton and R. L. Braun, J. Rheology 30, 949-980 (1986). Y. Zhang and C. S. Campbell, J. Fluid Mech. 237, 541 (1992). P. A. Thompson and G. S. Grest, Phys. Rev. Lett. 67, 1751-1754 (1991).Google Scholar
35 Rosato, A., Strandburg, K. J., Prinz, F., and Swendsen, R. H., Phys. Rev. Lett. 58, 10381040 (1987).Google Scholar
36 Anderson, R. S. and Haff, P. K., Science 241 820823 (1988); P. K. Haff, Booming dunes, American Scientist 74 376-381 (1986).Google Scholar
37 Socolar, J. E. S., Europhysics Lett. 18, 3944 (1992). R. Jullien and P. Meakin, Nature 344, 425-427 (1990).Google Scholar
38 Mehta, A., Physica A 186 121153 (1992).Google Scholar
39 Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, pp 102116, Springer-Verlag, 1983.Google Scholar
40 Knight, J.B., Jaeger, H. M., and Nagel, S. R., Phys. Rev. Lett. 70, 37283731 (1993).Google Scholar
41 Nature 361, 142145 (1993).Google Scholar
42 Bagnold, R. A., Roy. Soc. London Ser. A 225 4964 (1954).Google Scholar
43 Hermann, H. J., Physica A 191, 263276 (1992).Google Scholar
44 Metcalfe, G., Shinbrot, T., and Ottino, J., to be published.Google Scholar