Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:10:07.189Z Has data issue: false hasContentIssue false

Segregation of Yttrium Ions as to the Surfaces of t-ZrO2

Published online by Cambridge University Press:  11 February 2011

S.E. Redfern
Affiliation:
Dept. Materials, Imperial College London, Prince Consort Road, London, SW7 2BP, UK
C. R. Stanek
Affiliation:
Dept. Materials, Imperial College London, Prince Consort Road, London, SW7 2BP, UK
R.W. Grimes
Affiliation:
Dept. Materials, Imperial College London, Prince Consort Road, London, SW7 2BP, UK
R.D. Rawlings
Affiliation:
Dept. Materials, Imperial College London, Prince Consort Road, London, SW7 2BP, UK
Get access

Abstract

Atomistic simulation has been used to predict the segregation of defect clusters containing two substitutional Y3+ ions and one charge compensating oxygen vacancy to the (100) and (101) surfaces of t-ZrO2. The most stable orientation of the defect cluster depends on its distance from the surface. Significantly, segregation energies vary greatly between surfaces. For example, the defect cluster is equally stable up to a depth of 9Å from the (100) surface but only to a depth of 4Å below the (101) surface. In both cases, segregation energies are negligible 12Å beneath the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Swabb, J.J., J. Mat. Sci., 26, 6706 (1991).Google Scholar
2. Sato, T., Ohtaki, S., Endo, T. and Shimada, M., High Tech. Ceramics, ed. Vincenzini, P., Elsevier Science Publishers, B.V. Amsterdam, 1987, p281.Google Scholar
3. Grant, K.L. and Rawlings, R.D., J. Mat. Sci. Letters, 18, 739 (1999).Google Scholar
4. Grant, K.L., Rawlings, R.D. and Sweeney, R., J. Mat. Sci.: Mat. Med. 12, 557 (2001).Google Scholar
5. Chevalier, J., Cales, B. and Drouin, J.M., J. Am. Ceram. Soc., 82, 2150 (1999).Google Scholar
6. Li, J.F. and Watanabe, R., J. Am. Ceram. Soc., 66, 196 (1983).Google Scholar
7. Stemmer, S., Vleugels, J. and van der Biest, O., J. Europ. Ceram. Soc., 18, 1565 (1998).Google Scholar
8. Ogawa, H., Yasuda, A., Shibata, N., Ikuhara, Y. and Sakuma, T., Phil. Mag. Lett., 77, 199 (1998).Google Scholar
9. Gulino, A., Egdell, R. G., Baratta, G. A., Compagnini, G. and Fragala, I., J. Mat. Chem., 7, 1023 (1997).Google Scholar
10. Gulino, A., Egdell, R. G. and Fragala, I., J. Am. Ceram. Soc., 81, 757 (1998).Google Scholar
11. see papers in “Interatomic Potentials”, special issue of Phil. Mag. B, 73 No.1, 1996.Google Scholar
12. Tasker, P.W., Phil. Mag. A, 39, 119 (1979).Google Scholar
13. Redfern, S.E., Grimes, R.W. and Rawlings, R.D., 11, 449 (2001).Google Scholar
14. Gay, D.H. and Rohl, A.L., J. Chem. Soc.: Faraday Trans., 91, 925 (1995).Google Scholar
15. Abramowski, M., Grimes, R.W. and Owens, S., J. Nucl. Mater., 275, 12 (1999).Google Scholar
16. Schelling, P.K., Phillpot, S. R. and Wolf, D., J. Am. Ceram. Soc., 84, 1609 (2001).Google Scholar
17. Zacate, M.O., Minervini, L., Bradfield, D. J., Grimes, R.W. and Sickafus, K.E., Solid State Ionics, 128, 243 (2000).Google Scholar
18. Stanek, C. R., Grimes, R.W. and Bradford, M.R., Proc. Mat. Res. Soc., 654 A.A3.32.1 (2000).Google Scholar
19. Tasker, P. W., Colbourne, E. A. and Mackrodt, W. C., J. Am. Ceram. Soc., 68, 74 (1985).Google Scholar
20. Mackrodt, W. C. and Tasker, P. W., Mat. Res. Soc. Symp. Proc., 60, 291 (1986).Google Scholar
21. Kenway, P. R., Parker, S. C. and Mackrodt, W. C., Mol. Simul., 4, 175 (1989).Google Scholar
22. Battaile, C. C. Najafabadi, R. and Srolovitz, D. J., J. Am. Ceram. Soc., 78, 3195 (1995).Google Scholar