Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T01:58:09.338Z Has data issue: false hasContentIssue false

Self-Assembly of Cylinder-Forming Block Copolymers on Ultrananocrystalline Diamond (UNCD) Thin Films for Lithographic Applications

Published online by Cambridge University Press:  31 January 2011

Muruganathan Ramanathan
Affiliation:
Nathan@anl.govrm.muruganathan@gmail.com, Argonne National Laboratory, Center for Nanoscale Materials, Argonne, Illinois, United States
Seth B. Darling
Affiliation:
darling@anl.gov, Argonne National Laboratory, Center for Nanoscale Materials, Argonne, Illinois, United States
Anirudha V. Sumant
Affiliation:
sumant@anl.gov
Orlando Auciello
Affiliation:
auciello@anl.gov, United States
Get access

Abstract

Block copolymers (BCPs) consist of two or more chemically distinct and incompatible polymer chains (or blocks) covalently bonded. Due to the incompatibility and connectivity constraints between the two blocks, diblock copolymers spontaneously self-assemble into microphase-separated nanoscale domains that exhibit ordered 0, 1, 2 or 3 dimensional morphologies at equilibrium. Commonly observed microdomain morphologies in bulk samples are periodic arrangements of lamellae, cylinders, or spheres. Block copolymer lithography refers to the use of these ordered structures in the form of thin films as templates for patterning through selective etching or deposition. The self-assembly and domain orientation of block copolymers on a given substrate is critical to realize block copolymer lithography as a tool for large throughput nanolithography applications. In this work, we survey the morphology of cylinder-forming block copolymers by atomic force microscopy (AFM). Three kind of block copolymers were studied: a) poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS b) poly(styrene-block-methylmethacrylate), PS-b-PMMA and c) poly(styrene-block-dimethylsiloxane) PS-b-PDMS. Block copolymers were dissolved in a neutral solvent for both blocks (toluene) in order to obtain solutions of various concentrations (1 and 1.5 wt %). From these solutions, films were prepared by spin casting on ultrananocrystalline diamond (UNCD) thin film substrates. Results indicate that PS-b-PFS exhibits chemical and morphological compatibility to the UNCD surface in terms of wetting and domain control. A systematic comparison of self-assembly of these polymers on silicon nitride substrates demonstrates that UNCD thin films would require pre-treatment to be considered as a substrate for BCP lithography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cui, Y., Wei, Q. W., Park, H. and Lieber, C. M., Science 293:12891292 (2001).Google Scholar
2 Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. and Lieber, C. M., Nature biotechnology 23:12941301 (2005).Google Scholar
3 Ishimori, Y., Anal Chem 66:38303833 (1994).Google Scholar
4 Strother, T., Cai, W., Zhao, X. S., Hamers, R. J. and Smith, L. M., J Am Chem Soc 122:12051209 (2000).Google Scholar
5 Yusta, F. J., Hitchman, M. L. and Shamlian, S. H., J Mater Chem 7:14211427 (1997).Google Scholar
6 Yang, N., Uetsuka, H., Osawa, E. and E, N. C., Angew Chem Int Ed 47:51835185 (2008).Google Scholar
7 Shiomi, H., Jpn J Apply Phys 36:77457748 (1997).Google Scholar
8 Zou, Y. S., Yang, T., Zhang, W. J., Chong, Y. M., He, B., Bello, I. and Lee, S. T., Apply Phys Lett 92:(2008).Google Scholar
9 Gruen, D. M., MRS Bulletin 23:3235 (1998).Google Scholar
10 Shenderova, O. A. and Gruen, D. M., Ultra Nanocrystalline Diamond - Synthesis, Properties, and Applications, William Andrew Publishing, New York (2006).Google Scholar
11 Mansky, P., Chaikin, P. M. and Thomas, E. L., J Mater Sci 30:19871992 (1995).Google Scholar
12 Weigla, F., Frickera, S., Boyena, H.-G., Dietricha, C., Koslowskia, B., Plettla, A., Purschea, O., Ziemanna, P., Waltherb, P., Hartmannc, C., Ottc, M. and Möller, M., Diamond and Related Materials 15:16891694 (2006).Google Scholar
13 Spatz, J. P., Mossmer, S., Hartmann, C., Moller, M., Herzog, T., Krieger, M., Boyen, H.-G., Ziemann, P. and Kabius, B., Langmuir 16:407415 (2000).Google Scholar
14 Gabor, A. H., Lehner, E. A., Mao, G., Schneggenburger, L. A. and Ober, C. K., Chem Mater 6:927934 (1994).Google Scholar
15 Sundrani, D., Darling, S. B. and Sibener, S. J., Langmuir 20:50915099 (2004).Google Scholar
16 Sundrani, D., Darling, S. B. and Sibener, S. J., Nano Letters 4:273276 (2004).Google Scholar
17 Kim, S. O., Solak, H. H., Stoykovich, M. P., Ferrier, N. J., Pablo, J. J. D. and Nealey, P. F., Nature 424:411414 (2003).Google Scholar
18 Hawker, C. J. and Russell, T. P., MRS bulletin 30:952966 (2005).Google Scholar
19 Segalman, R. A., Schaefer, K. E., Fredrickson, G. H., Kramer, E. J. and Magonov, S., Macromolecules 36:44984506 (2003).Google Scholar
20 Segalman, R. A., Yokoyama, H. and Kramer, E. J., Adv Mater 13:11521155 (2001).Google Scholar
21 Darling, S. B., Progress in Polymer Science 32:11521204 (2007).Google Scholar
22 Sumant, A. V., Auciello, O., Yuan, H.-C., Ma, Z., Carpick, R. W. and Mancini, D. C., Large Area Low Temperature Ultrananocrystalline Diamond (UNCD) Films and Integration with CMOS Devices for Monolithically Integrated Diamond MEMS/NEMS-CMOS Systems, in Proc of SPIE - Micro- and Nanotechnology Sensors, Systems, and Applications, ed by George, M. S. I. Thomas, Dutta, Achyut K., pp. 731817–731811-731817–731817 (2009).Google Scholar
23 Sumant, A. V., Grierson, D. S., Gerbi, J. E., Carlisle, J. A., Auciello, O. and Carpick, R. W., Phys Rev B 76:235439235442 (2007).Google Scholar
24 Ramanathan, M., Darling, S. B., Sumant, A. V. and Auciello, O., J Vacuum Sci Tech - A 28:ASAP (2010).Google Scholar
25 Ramanathan, M., Nettleton, E. and Darling, S. B., Thin Solid Films 517:44744478 (2009).Google Scholar
26 Ramanathan, M. and Darling, S. B., Soft Matter 5:46654671 (2009).Google Scholar
27 Jung, Y. S. and Ross, C. A., Nano Lett 7:20462050 (2007).Google Scholar