Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:45:26.330Z Has data issue: false hasContentIssue false

Self-Assembly of Ruthenium Porphyrins into Monolayer and Multilayer Architectures via Heterogeneous Coordination Chemistry

Published online by Cambridge University Press:  17 March 2011

David M. Sarno
Affiliation:
Department of Chemistry and Institute for Materials Research, State University of New York at Binghamton, Binghamton, NY 13902
Luis J. Matienzo
Affiliation:
IBM Corporation, Endicott, NY 13760
Get access

Abstract

Self-assembly chemistry is finding use as a means of controlling the nanoscale structures at materials interfaces. Building on the success of a previous methodology, Ruthenium porphyrins have been coordinated to the pyridine-terminated surface of a self-assembled alkylsilane coupling layer on silica glass. These arrays are built in a stepwise fashion in which the surface of each layer allows further reaction to yield the next layer. Characterization by UV-vis and XPS confirms the deposition of the alkyl chains and pyridine moieties of the coupling layer, as well as coordination of the subsequent Ru-porphyrin layer. AFM analysis indicates very smooth surfaces, with roughness measured at 0.43 nm and 1.43 nm for the pyridine and porphyrin layers, respectively. The occasional appearance of large surface features (15-30 nm diameter) suggests aggregation among Φ-systems, with further characterization underway. Strategies toward the construction of a multilayer porphyrin architecture are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McQuade, D. T., Pullen, A. E., and Swager, T. M., Chem. Rev. 100, 25372574 (2000).Google Scholar
2. Ulman, A., Chem. Rev. 96, 15331554 (1996).Google Scholar
3. Vallant, T., Kattner, J., Brunner, H., Mayer, U., and Hoffmann, H., Langmuir 15, 53395346 (1999).Google Scholar
4. Sarno, D. M., Jiang, B., Grosfeld, D., Afriyie, J. O., Matienzo, L. J., and Jones, W. E. Jr, Langmuir 16, 61916199 (2000).Google Scholar
5. Li, D., Moore, L. W., and Swanson, B. I., Langmuir 10, 11771185 (1994).Google Scholar
6. Offord, D. A., Sachs, S. B., Ennis, M. S., Eberspacher, T. A., Griffin, J. H., Chidsey, C. E. D., and Collman, J. P., J. Am. Chem. Soc. 120, 44784487 (1998).Google Scholar
7. Beumel, O. F. Jr, Smith, W. N., and Rybalka, B., Synthesis 43–45 (1974).Google Scholar
8. Allum, K. G., Hancock, R. D., Howell, I. V., McKenzie, S., Pitkethly, R. C., and Robinson, P. J., J. Organomet. Chem. 87, 203216 (1975).Google Scholar
9. Rousseau, K., and Dolphin, D., Tetrahedron Lett. 48, 42514254 (1974).Google Scholar
10. Cullen, D., Jun, E. M., Srivastava, T. S., and Tsutsui, M., J. Chem. Soc., Chem. Commun. 584585 (1972).Google Scholar
11. Barley, M., Becker, J. Y., Domazetis, G., Dolphin, D., and James, B. R., Can. J. Chem. 61, 23892396 (1983).Google Scholar
12. Paulson, S., Morris, K., and Sullivan, B. P., J. Chem. Soc., Chem. Commun. 16151617 (1992).Google Scholar
13. Wasserman, S. R., Tao, Y.-T., and Whitesides, G. M., Langmuir 5, 10741087 (1989).Google Scholar
14. Little, R. G. and Ibers, J. A., J. Am. Chem. Soc. 95, 85838590 (1973).Google Scholar
15. Hunter, C. A. and Sanders, J. K. M., J. Am. Chem. Soc. 112, 55255534 (1990).Google Scholar
16. Endo, A., Tagami, U., Wada, Y., Saito, M., and Shimizu, K., Satô, G. P., Chem. Lett. 243244 (1996).Google Scholar