Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T00:03:41.387Z Has data issue: false hasContentIssue false

Self-energy Models for Scattering in Semiconductor Nanoscale Devices: Causality Considerations and the Spectral Sum Rule

Published online by Cambridge University Press:  18 July 2013

John R. Barker
Affiliation:
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom,
Antonio Martinez
Affiliation:
College of Engineering, Swansea University, Swansea, United Kingdom.
Get access

Abstract

The modelling of of silicon gate-all-around nanowire transistors by non-equilibrium Green function methods requires the computation of self-energies for inelastic electron-phonon interactions. It is shown that many approximations designed to reduce numerical complexityto these self-energies in fact fail because they do not satisfy appropriate causality conditions. Four familiar approximations are discussed and their failures resolved. It is also shown that a condition for the spectral density sum rule to hold (and hence accurate density of states in energy) depends on a simple causality condition.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anatram, M.P., Millar, C. and Asenov, A., IEEE Trans. Electron Dev. 54, 2213 (2007).CrossRefGoogle Scholar
Martinez, A., Seone, N., Brown, A. R., Barker, J.R. and Asenov, A., IEEE Trans. Elect. Dev., 57, 1626 (2010)CrossRefGoogle Scholar
Martinez, A., Seoane, N., Aldegunde, M., Brown, A. R., Barker, J.R. and Asenov, A., IEEE Trans. Electron Dev., 58, 2209 (2011).CrossRefGoogle Scholar
Barker, J.R., Martinez, A. and Aldegunde, M., J. Phys. Conf. Ser., 367, 012012 (2012).CrossRefGoogle Scholar
Aldegunde, M., Martinez, A. and Barker, J.R., J. App. Phys., 113, 014501 (2013).CrossRefGoogle Scholar
Aldegunde, M., Martinez, A. and Barker, J.R., IEEE El. Dev. Letters 33, 194 (2012).CrossRefGoogle Scholar
Fischetti, M.V, Neumayer, D.A, and Cartier, E. A, J. App. Phys., 90, 4587 (2001).CrossRefGoogle Scholar
Barker, J.R., Watling, J.R. and Ferrari, G., J. Phys. Conf. Ser. 38, 184 (2006).CrossRefGoogle Scholar
Yang, L., Watling, J.R., Wilkins, R., Borici, M., Barker, J.R., Asenov, A. and Roy, S., J. Comp. Electronics, 4, 171 (2005).CrossRefGoogle Scholar
Jin, S., Park, Y.J. and Min, H.S., J. Appl. Phys. 99, 123719 (2006).CrossRefGoogle Scholar
Zeinstra, R., Alenitsyn, A. and Arshad, M., J. of Math. Sciences, 150, 1799 (2008).CrossRefGoogle Scholar
Arshad, M., Kondratyev, A. S. and Siddique, I., Physical Review B 76, 054306 (2007).CrossRefGoogle Scholar
Titchmarsh, E.C., Theory of Fourier Integrals (Clarendon Press, Oxford, 1948), 119 (1948).Google Scholar
Toll, J. S., Phys. Rev. 104, 760 (1956).CrossRefGoogle Scholar
King, F.W., Hilbert Transforms, vols. 1-2 (Cambridge University Press: New York, 2009).Google Scholar
Barker, J.R. and Martinez, A., to be published.Google Scholar
Engelsberg, S. and Schrieffer, J.R., Phys.Rev., 131, 993 (1963).CrossRefGoogle Scholar