Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T04:44:37.846Z Has data issue: false hasContentIssue false

Self-learning kinetic Monte Carlo model for arbitrary surface orientations

Published online by Cambridge University Press:  29 May 2013

Andreas Latz
Affiliation:
Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
Lothar Brendel
Affiliation:
Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
Dietrich E. Wolf
Affiliation:
Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
Get access

Abstract

While the self-learning kinetic Monte Carlo (SLKMC) method enables the calculation of transition rates from a realistic potential, implementations of it were usually limited to one specific surface orientation. An example is the fcc (111) surface in Latz et al. 2012, J. Phys.: Condens. Matter 24, 485005. This work provides an extension by means of detecting the local orientation, and thus allows for the accurate simulation of arbitrarily shaped surfaces. We applied the model to the diffusion of Ag monolayer islands and voids on a Ag(111) and Ag(001) surface, as well as the relaxation of a three-dimensional spherical particle.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Trushin, O., Karim, A., Kara, A. and Rahman, T. S., Phys. Rev. B 72, 115401 (2005).CrossRefGoogle Scholar
Latz, A., Brendel, L. and Wolf, D. E., J. Phys.: Condens. Matter 24, 485005 (2012).Google Scholar
Voter, A. F., Phys. Rev. B 34, 6819 (1986).CrossRefGoogle Scholar
Cleri, F. and Rosato, V., Phys. Rev. B 48, 22 (1993).CrossRefGoogle Scholar
Huang, Z.-H. and Allen, R. E., J. Vac. Sci. Technol. A 9, 876 (1991).CrossRefGoogle Scholar
Khare, S. V., Bartelt, N. C., and Einstein, T. L., Phys. Rev. Lett. 75, 2148 (1995).CrossRefGoogle Scholar
Morgenstern, K. et al. ., Phys. Rev. Lett. 74, 2058 (1995).CrossRefGoogle Scholar
Mehl, H., Biham, O., Millo, O., and Karimi, M., Phys. Rev. B 61, 4975 (2000).CrossRefGoogle Scholar
Westerhoff, F., Zinetullin, R. and Wolf, D. E., in Powders and Grains, edited by Garcia-Rojo, R., Herrmann, H. J. and McNamara, S., (Balkema, Leiden, 2005), pp. 641645.Google Scholar
Wen, Y., and Zhang, J., Solid State Commun. 144, 163 (2007).CrossRefGoogle Scholar