Published online by Cambridge University Press: 01 February 2011
The carbon nanotubes provide large surface that can enhance the gas adsorption properties and increase the conductivity at a lower temperature for gas sensing. The gas sensing properties of the hybrid TiO2/CNTs material are examined in this study. The sol-gel technique is used to prepare a thin layer of nano-TiO2 coated on CNTs. The structure of TiO2/CNTs hybrid materials is identified by X-ray diffraction (XRD) and Raman spectrum. The granules and surface morphology are analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrical properties of the hybrid TiO2/CNTs indicate that the operation temperature can be lowered to ambient temperature and this will enhance the gas sensitivity for detecting CO gas. The n-type or p-type behavior of hybrid TiO2/CNTs can be controlled by the coating thickness of hybrid TiO2. According to the image results, the mechanisms of the n-type and p-type behavior of hybrid TiO2/CNTs system are proposed.