Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T08:22:20.050Z Has data issue: false hasContentIssue false

Shape Memory Behavior of Ultra-High Molecular Weight Polyethylene

Published online by Cambridge University Press:  30 March 2012

Sergey Kaloshkin
Affiliation:
National University of Science and Technology “MISIS”, Leninsky prosp., 4, Moscow, 119049, Russia
Aleksey Maksimkin
Affiliation:
National University of Science and Technology “MISIS”, Leninsky prosp., 4, Moscow, 119049, Russia
Maria Kaloshkina
Affiliation:
National University of Science and Technology “MISIS”, Leninsky prosp., 4, Moscow, 119049, Russia
Mihail Zadorozhnyy
Affiliation:
National University of Science and Technology “MISIS”, Leninsky prosp., 4, Moscow, 119049, Russia
Margarita Churyukanova
Affiliation:
National University of Science and Technology “MISIS”, Leninsky prosp., 4, Moscow, 119049, Russia
Get access

Abstract

Shape memory effect in pure ultra-high molecular weight polyethylene (UHMWPE) has been studied using dynamic mechanical analysis. Temperature dependencies of properties that define functional characteristics of shape memory polymers (SMP) such as recovery stress, recovery strain and activation temperature of transition were determined for UHMWPE. The recovery stress in UHMWPE deformed by 200% achieved rather high values, up to 7 MPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Behl, M. and Lendlein, A., J. of Mater. Chem., 20, 33353345 (2010).Google Scholar
2. Leng, J., Lan, X., Liu, Y., and Du, S., Progress in Mater. Sci. 56, 1077 (2011).Google Scholar
3. Rezanejad, S. and Kokabi, M., Europ. Polym. J. 43, 2856 (2007).Google Scholar
4. Khonakdar, H. A., Jafari, S. H., Rasouli, S., Morshedian, J. and Abedini, H., Macromol. Theory. Simul. 16, 43 (2007).Google Scholar
5. Dong, G., Hua, M., Li, J. and Chuah, K. B., Mater. and Design 28, 2402 (2007).Google Scholar
6. Martinez-Nogues, V., Medel, F. J., Mariscal, M. D., Endrino, J. L., Krzanowski, J., Yubero, F. and Puertolas, J. A., J. of Phys: Conf. Ser. 252 (2010).Google Scholar
7. Wannomae, K. K., Christensen, S. D., Micheli, B. R., Rowell, S. L., Schroeder, D. W. and Muratoglu, O. K., J. of Artroplasty 25 (4), 635 (2010).Google Scholar
8. Bastiaansen, C. W. M., Meyer, H. E. H. and Lemstra, P. J., Polymer 31, 1435 (1990).Google Scholar
9. Small, W., Singhal, P., Wilson, T. S. and Maitland, D. J., J. of Mater. Chem., 20, 3356 (2010).Google Scholar
10. Behl, M. and Lendlein, A., Materials Today 10 (4), 20 (2007).Google Scholar
11. Rousseau, I. A., Polym. Eng. and Sci. 2075 (2008).Google Scholar
12. Bartczak, Z., J. of Polym. Sci.: Part B: Polym. Phys. 48, 276 (2010).Google Scholar
13. Ratna, D. and Karger-Kocsis, J., J. Mater. Sci. 43, 254 (2008).Google Scholar