Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T00:56:15.099Z Has data issue: false hasContentIssue false

Sharp Absorption and High Temperature Thermal Emission from Simple Metallic Photonic Crystals

Published online by Cambridge University Press:  31 January 2011

Rana Biswas
Affiliation:
biswasr@iowastate.edu, United States
Dayu Zhou
Affiliation:
dayu.zhou@gmail.com, Iowa State University, Electrical & Computer Engineering, Microelectronics Research Center, Ames, Iowa, United States
Irina Puscasu
Affiliation:
Irina.puscasu@icx-photonics.com, ICX Photonics, Billerica, Massachusetts, United States
Edward Johnson
Affiliation:
ed.johnson@icxt.com, ICX Photonics, Billerica, Massachusetts, United States
Andrew Taylor
Affiliation:
andrew.taylor@icxt.com, ICX Photonics, Billerica, Massachusetts, United States
Weijun Zhao
Affiliation:
weijun@iastate.edu, Iowa State University, Electrical & Computer Engineering, Microelectronics Research Center, Ames, Iowa, United States
Get access

Abstract

We design and fabricate metallic photonic crystals with sharp absorption peaks in the infrared regime. We have fabricated a metallic photonic crystal consisting of a triangular lattice of holes in a silicon layer conformally coated with gold at a lattice pitch of 3.8 microns. Conventional lithographic and deep reactive ion etching was used. The photonic crystal exhibits a deep reflection minimum and sharp thermal emission peak near the lattice spacing. Measurements agree well with rigorous scattering matrix simulations. This simple single-layer structure with a single patterned exposure has no emission sidebands and can be scaled to other lattice spacings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lin, S.Y. Fleming, J.G. and El-Kady, I., Optics Letters 28, 1909 (2003).Google Scholar
[2] Lin, S. Y. Moreno, J. and Fleming, J. G. Appl. Phys. Lett. 83, 380 (2003).Google Scholar
[3] Lee, J.H. Kim, C.-H., Kim, Y.-S., Ho, K. M. Constant, K. and Oh, C. H. Appl. Phys. Lett. 88, 181112 (2006).Google Scholar
[4] Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. Johnson, E. Biswas, R. and Ding, C. G., J. Appl., Phys 98, 13531 (2005).Google Scholar
[5] Biswas, R. Ding, C.G., Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. Johnson, E. Phys. Rev. B. 74, 045107 (2006).Google Scholar
[6] Biswas, R. Zhou, D. Puscasu, I. Johnson, E. Taylor, A. and Zhao, W. Appl. Phys. Lett. 93, 063307 (2008).Google Scholar
[7] Tay, S. Kropachev, A. Araci, I. E. Skotheim, T. Norwood, R. A. and Peyghambarian, N. Appl. Phys. Lett. 94, 071113 (2009).Google Scholar
[8] Biswas, R. Neginhal, S. Ding, C.G. Puscasu, I. and Johnson, E. J. Opt. Soc. Am. B 24, 2489 (2007).Google Scholar
[9] Ordal, M. A. Long, L. L. Bell, R. J. Bell, S. E. Bell, R. R. Alexander, R. W. Jr. , and Ward, C. A., Appl. Opt. 22, 1099 (1983).Google Scholar
[10] Ebbesen, T.W. Lezec, H.J. Ghaemi, H.F. Thio, T. and Wolff, P.A. Nature (London) 391, 667 (1998).Google Scholar
[11] Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J. Pellerin, K. M. Thio, T. Pendry, J. B. and Ebbesen, T. W. Phys. Rev. Lett. 86, 1114 (2001).Google Scholar
[12] Pendry, J. Martin-Moreno, L., Garcia-Vidal, F. J., Science 305, 847 (2004).Google Scholar
[13] Sai, H. Yugami, H. Appl. Phys. Lett. 85, 3399(2004).Google Scholar