Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:09:08.020Z Has data issue: false hasContentIssue false

Sialon Ceramics Sintered with Yttria and Rare Earth Oxides

Published online by Cambridge University Press:  25 February 2011

Thommy EkstrÖm*
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden
Get access

Abstract

Dense single-phase α-, β- and O′-sialon cermics or mixed sialon ceramics without a glassy grain-boundary phase can be prepared at high temperatures and pressures, and these materials are well suited for high-temperature use, but they are usually brittle. Additional quantities of oxides of group IIIB metals in the periodic table are often added as sintering aids to achieve pressureless sintering and thereby to allow more complicated shapes to be manufactured directly and at lower costs. The most common additive is yttria, but the rare earth oxides are also of interest. All these oxides will promote the growth of elongated β crystals in the microstructure, and the fracture toughness will be improved considerably. Low-cost oxides like Nd2O3, La2O3 or CeO2 may replace Y2O3 without significantly impairing the mechanical properties at room temperature. The expensive rare-earth oxides like Sm2O3, Dy2O3 or Yb2O3 have been found to be as good additives as yttria, or even better, but improvements in mechanical properties are generally small and do not justify the use of these additives in large-scale production. The residual intergranular glassy phase usually found in the microstructure of metal-oxide-doped sialons will deteriorate the properties at very high temperatures, and this type of material is best suited for use at operation temperatures below 900-1000°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jack, K.H. and Wilson, W.I., Nature, Phys. Science, 238, 28 (1972).Google Scholar
2. Jack, K.H., J. Mater. Sci. 11, 1135 (1976).Google Scholar
3. Ekström, T. and Nygren, M., J. Am. Ceram. Soc. 75, 259 (1992).Google Scholar
4. Umebayashi, S., Kishi, K., Tani, E. and Kobayashi, K., Yogyo Kyokai Shi 92, 35 (1984).Google Scholar
5. Tani, E., Ichinose, H., Kishi, K., Umebayashi, S. and Kobayashi, K., Yogyo Kyokai Shi 92,675 (1984).Google Scholar
6. Ekström, T., Käll, P.-O., Nygren, M. and Olsson, P.-O., J. Mater. Sci. 24, 1853 (1989).Google Scholar
7. Ekström, T. and Olsson, P.-O., J. Am. Ceram. Soc. 72, 1722 (1989).Google Scholar
8. Trigg, M.B. and Jack, K.H., J. Mater. Sci. Letters 6,407 (1987).Google Scholar
9. Ekström, T., Olsson, P.-O. and Holmström, M., J. Europ. Ceram. Soc., in print.Google Scholar
10. Hampshire, S., Park, H.K., Thompson, D.P. and Jack, K.H., Nature (London) 274, 880 (1978).Google Scholar
11. Thompson, D.P., Mater. Sci. Forum 47, 21 (1989).Google Scholar
12. Bergman, B., Ekström, T. and Micski, A., J. Europ. Ceram. Soc. 8, 141 (1991).Google Scholar
13. Käll, P.-O. and Ekström, T., J. Europ. Ceram. Soc. 6, 119 (1990).Google Scholar
14. Söderlund, E. and Ekström, T., J. Mater. Sci. 25, 4815 (1990).Google Scholar
15. Ekström, T. and Olsson, P.-O., J. Mater. Sci. Letters 8, 1067 (1989).Google Scholar
16. Olsson, P.-O. and Ekström, T., J. Mater. Sci. 25, 1824 (1990).Google Scholar
17. Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.P., J. Am. Ceram. Soc. 64, 533 (1981).Google Scholar
18. Chatfield, C., Ekström, T. and Mikus, M., J. Mater. Sci. 21, 2297 (1986).Google Scholar
19. Loehman, R.E., J. Non-Cryst. Solids 42, 433 (1980).Google Scholar
20. Ekström, T., Mater. Sci. Engin. A109, 341 (1989).Google Scholar
21. Ekström, T. and Persson, J., J. Am. Ceram. Soc. 73, 2834 (1990).Google Scholar
22. Persson, J. and Nygren, M., in 11th Risö Symposium on Metallurgy and Materials Science, edited by Bentzen, J.J., Bilde-Sörensen, J.B., Christiansen, N., Horsewell, A. and Ralph, B. (Riso National Laboratory, Roskilde, Denmark, 1990) p. 451.Google Scholar
23. Hampshire, S., Drew, R.A.L and Jack, K.H., Phys. Chem. Glasses 26, 182 (1985).Google Scholar
24. Messier, D.R. and Broz, A., J. Am. Ceram. Soc. 65, C123 (1982).Google Scholar
25. Hampshire, S., Drew, R.A.L. and Jack, K.H., J. Am. Ceram. Soc. 67, C46 (1984).Google Scholar
26. Loehman, R.E., J. Non-Cryst. Solids 56, 123 (1983).Google Scholar
27. Messier, D.R., Int. J. High Tech. Ceram. 3, 33 (1987).Google Scholar
28. Winder, S.M. and Lewis, M.H., J. Mater. Sci. Letters 4, 241 (1985).Google Scholar
29. Persson, J., Ekström, T., Käll, P.-O. and Nygren, M., J. Europ. Ceram. Soc., in print.Google Scholar
30. Takahashi, T., Ceram. Trans. 7, 674 (1990).Google Scholar
31. Cinibulk, M.K., Thomas, G. and Johnson, S.M., J. Am. Ceram. Soc. 75, 2037 (1992); 75, 2044 (1992); 75, 2050 (1992).Google Scholar
32. Hirosaki, N., Okada, A. and Matoba, K., J. Am. Ceram. Soc. 71, C144 (1988).Google Scholar
33. Thompson, D.P., Br. Ceram. Proc. 45, 1 (1989).Google Scholar
34. Mandal, H., Thompson, D.P. and Ekström, T., Key Engin. Mater. 72–74, 187 (1992).Google Scholar
35. Mandal, H., Thompson, D.P. and Ekström, T., Br. Ceram. Proc. 49,97 (1992).Google Scholar
36. Ekström, T., Jansson, K., Olsson, P.-O. and Persson, J., J. Europ. Ceram. Soc. 8, 3 (1991).Google Scholar
37. Erbe, E.M. and Day, D.E., J. Am. Ceram. Soc. 73, 2708 (1990).Google Scholar
38. Drew, R.A.L., Hampshire, S. and Jack, K.H., Proc. Br. Ceram. Soc. 31, 119 (1981).Google Scholar
39. Hampshire, S., Flynn, R., Lonergan, J. and O'Riordan, A., in Ceramic Materials and Components for Engines. edited by Carlsson, R., Johansson, T. and Kahlman, L. (Elsevier Applied Science Publishiers, London, 1991) p. 157.Google Scholar