Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:16:33.376Z Has data issue: false hasContentIssue false

Silicon Nanofabrication and Chemical Modification by UHV-STM

Published online by Cambridge University Press:  15 February 2011

J. W. Lyding
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois, Urbana, Illinois 61801. Electronic mail: j-lyding@casper.beckman.uiuc.edu
T.-C. Shen
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois, Urbana, Illinois 61801.
G. C. Abeln
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois, Urbana, Illinois 61801.
C. Wang
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois, Urbana, Illinois 61801.
E. T. Foley
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois, Urbana, Illinois 61801.
J. R. Tucker
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois, Urbana, Illinois 61801.
Get access

Abstract

Patterning on the 10 Å size scale has been achieved with a UHV-STM for Si(100)-2×1:H surfaces. Hydrogen passivation serves as a monolayer resist which the STM locally desorbs, exposing clean Si(100)-2×1 for selective chemistry. Two mechanisms have been identified for hydrogen removal by STM electrons: in the field emission regime direct electron stimulated desorption of hydrogen occurs whereas, in the lower energy tunneling regime, hydrogen desorption results from vibrational excitation of the Si-H bond at high tunneling currents. Furthermore, we find that atomic hydrogen is liberated in contrast to molecular hydrogen evolved during thermal desorption. Selective oxidation and nitridation of the STM-patterned areas has been achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review see, Shedd, G. M. and Russell, P. E., Nanotechnology 1, 67 (1990).Google Scholar
2. Dagata, J. A., Schneir, J., Harary, H. H., Evans, C. J., Postek, M. T., and Bennet, J., Appl. Phys. Lett. 56, 2001 (1990).Google Scholar
3. Snow, E. S., Campbell, P. M., and McMarr, P. J., Appl. Phys. Lett. 63, 749 (1993).Google Scholar
4. Snow, E. S., Juan, W. H., Pang, S. W., and Campbell, P. M., Appl. Phys. Lett. 66, 1729 (1995).Google Scholar
5. Campbell, P. M., Snow, E. S., and McMarr, P. J., Solid State Electron. 37, 583 (1994); Appl. Phys. Lett. 66, 1388 (1995).Google Scholar
6. Minne, S. C., Soh, H. T., Flueckiger, Ph., and Quate, C. F., Appl. Phys. Lett. 66, 703 (1995).Google Scholar
7. Kramer, N., Jorritsma, J., Birk, H., and Schönenberger, C., (unplubished).Google Scholar
8. Lyding, J. W., Shen, T.-C., Hubacek, J. S., Tucker, J. R., and Abeln, G. C., Appl. Phys. Lett. 64, 2010 (1994).Google Scholar
9. Becker, R. S., Higashi, G. S., Chabal, Y. J., and Becker, A. J., Phys. Rev. Lett. 65, 1917 (1990).Google Scholar
10. Virginia Semiconductor, Inc., Fredericksburg, VA 22401.Google Scholar
11. Lyding, J. W., Skala, S., Hubacek, J. S., Brockenbrough, R., and Gammie, G., Rev. Sci. Instrum. 59, 18971902 (1988).Google Scholar
12. Brockenbrough, R. T. and Lyding, J. W., Rev. Sci. Instrum. 64, 2225 (1993).Google Scholar
13. Boland, J. J., Phys. Rev. Lett. 67, 1539 (1991).Google Scholar
14. Shen, T.-C., Wang, C., Lyding, J. W., and Tucker, J. R., Appl. Phys. Lett. 66, 976 (1995). 196 Google Scholar
15. Hamers, R. J., Avouris, Ph., and Bozso, F., Phys. Rev. Lett. 59, 2071 (1987).Google Scholar
16. Shen, T.-C., Wang, C., Abeln, G. C., Tucker, J. R., Lyding, J. W., Avouris, Ph., and Walkup, R. E., accepted for publication in Science.Google Scholar
17. Walkup, R. E., Newns, D. M., and Avouris, Ph., Atomic and Nanometer-Scale Modification of Materials, pp. 97109, Kluwer Academic Publishers, Phaedon, Avouris, editor, 1993.Google Scholar
18. Abeln, G. C., Foley, E. T., Lyding, J. W., and Avouris, Ph., unpublished.Google Scholar