Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T14:23:26.026Z Has data issue: false hasContentIssue false

Silicon on Insulator by High Dose Implantation

Published online by Cambridge University Press:  21 February 2011

P. L. F. Hemment*
Affiliation:
Department of Electronic and Electrical Engineering, University of Surrey, Guildford, GU2 5XH, U.K.
Get access

Abstract

Silicon on insulator structures consisting of a buried dielectric, formed by the implantation of high doses of oxygen ions, have been shown to be suitable substrates for LSI circuits. The substrates are compatible with present silicon processing technologies and are confidently expected to be suitable for VLSI circuits. In this paper the microstructure and physical properties of this SOI material will be described and the dependence of these characteristics upon the implantation conditions and subsequent thermal processing will be discussed. With this information, it is then possible to outline the specification for a high current oxygen implanter.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, M.L. (Ed), Electromagnetically Enriched Isotopes and Mass Spectrometry, Butterworth Sci. Pub., London (1956).Google Scholar
2. Watanabe, M. and Tooi, A., Jap. J. Appl. Phys., 5, 737 (1966).10.1143/JJAP.5.737CrossRefGoogle Scholar
3. Anand, K.V., private communication.Google Scholar
4. Butcher, J.B., private communication.Google Scholar
5. Badawi, M.H. & Anand, K.V., J. Phys. D. Appl. Phys. 10, 1931 (1977).10.1088/0022-3727/10/14/009Google Scholar
6. Itoh, K. & Suchimoto, T.T., 6th Symposium on Ion Implantation in Semiconductors. The Inst. Phys. Chem. Res, p. 43 (1975).Google Scholar
7. Izumi, K., Doken, M. & Ariyoshi, H., Electr. Letts. 14, 18, 593 (1978).10.1049/el:19780397CrossRefGoogle Scholar
8. Lam, H.W., Pinizzotto, R.F., Yuan, H.T. & Bellavance, D.W., Electr. Letts. 17, 356 (1981).10.1049/el:19810251Google Scholar
9. Alderman, J., European Solid State Device Research Conf., Munich, Sept. (1982).Google Scholar
10. Izumi, K., Omura, Y, Ishikawa, M. & Sano, E., 1982, Symposium on VLSI Technology, Oiso, Sept. (1982).Google Scholar
11. Dexter, R.J., Watelski, S.B. & Picraux, S.T., Appl. Phys. Letts. 23, 455 (1973).10.1063/1.1654956Google Scholar
12. Bayerl, P., Ryssel, H. & Ramin, M., Proc. IBMM 1978, 1187, Budapest (1978)Google Scholar
13. Bourget, P., Dupont, S.M., Turan, E. Le, Aurray, P., Guivanch, A., Salvi, M., Pelous, G. & Henoc, P., J. Appl. Phys. 51, 12, (1980).Google Scholar
14. Zimmer, G. & Vogt, H., IEEE Trans on Electron Devices, ED–30, 11, 1515 (1983).Google Scholar
15. Tokuyama, T., Ion Engineering Congress; Ion Sources and Ion Sources Technology, Kyoto (1983).Google Scholar
16. Izumi, K., Omura, Y. & Nakashima, , MRS. Meeting, Boston (1983).Google Scholar
17. Wilson, I.H., 2nd Inter. Conf. Rad. Effects in Insulators, New Mexico, May (1983).Google Scholar
18. Carter, G., Baruak, J.N., Grant, W.A. & Whitton, J.L., Rad. Effects, 16, 101,107 (1972).10.1080/00337577208232028Google Scholar
19. Kilner, J.A., Littlewood, S., Hemment, P.L.F., Maydell-Ondrusz, E.A. & Stephens, K.G., 6th Inter. Conf. on Ion Beam Analysis, Arizona (May 1983).Google Scholar
20a Hayaski, T., Okamoto, H. & Homma, Y., Inst. of Phys. Conf. Ser. 59, 11, 559 (1981).Google Scholar
20b Ohwada, K., Izumi, K. & Hayashi, T., Jap. Ann. Rev. in Electronics and Telecommunication Technologies, p. 25 (1982).Google Scholar
21. Maydell-Ondrusz, E.A., to be published.Google Scholar
22. Hemment, P.L.F., Maydell-Ondrusz, E.A., Stephens, K.G., Butcher, J., Ioannou, D. & Alderman, J., Nucl. Inst. Meths. 209/210, 157, (1983).10.1016/0167-5087(83)90794-9Google Scholar
23. Hemment, P.L.F., Maydell-Ondrusz, E.A., Stephens, K.G., Arrowsmith, R.P., Glaccum, A.C., Kilner, J.A. & Butcher, J.B., MRS Meeting, Boston (1983).Google Scholar
24. Das, K., Butcher, J.B., Wilson, M.C., Booker, G.R., Wellby, D.W., Hemment, P.L.F. & Anand, K.V., Inst. Phys. Conf. Ser, 60, 307 (1981).Google Scholar
25. Fathy, D., Krivanek, O.C., Carpenter, R. & Wilson, S.R., Proc. Conf. Microscopy of Semiconducting Materials, Oxford (1983).Google Scholar
26. Tuppen, C.G., Taylor, M.R., Hemment, P.L.F. & Arrowsmith, R.P., submitted to Appl. Phys. Lett.Google Scholar
27. Tuppen, C.G., Davis, G.J., Taylor, M.R. & Heckingbottom, R., MRS Meeting, Boston, Nov. (1983).Google Scholar
28. Groza, A.A. et al, Phys. Stat. Sol (A), 70, 763 (1982).10.1002/pssa.2210700247Google Scholar
29. Nakashima, S., Akiya, M. & Kato, K., Electron Lett, 19, 569 (1983).Google Scholar
30. Patel, J.R., Semiconducting Silicon 1981, Huff, H.R., Kriegler, R.J. & Takeishi, Y. ed, p. 189 (The Electrochem. Soc, Pennington, 1981).Google Scholar
31. Arrowsmith, R.P., Glaccum, A.E., Hemment, P.L.F., Taylor, M.R. & Tuppen, C.G., IEEE SOS/SOI Technology Workshop, Wyoming, USA (October 1983).Google Scholar
32. Taylor, M.R., Tuppen, C.G., Arrowsmith, R.P., Dobson, R.M., Glaccum, A.E., Wilson, M.C., Booker, G.R. & Hemment, P.L.F., Inst. Phys. Ser. 67, 10 (1983).Google Scholar
33. Smith, B.J., AERE Harwell, private communication.Google Scholar
34. Arrowsmith, R.P., private communication.Google Scholar
35. Hemment, P.L.F., Vacuum 29, 11/12, 439 (1979).10.1016/S0042-207X(79)80893-3Google Scholar
36. Kreibig, U., Skorupa, W. & Hensel, E., Thin Solid Films, 100, L25-L28 (A83).Google Scholar
37. Dobson, R., Arrowsmith, R.P., Glaccum, A.E., Hemment, P.L.F., Inter. Sym. Electron, Ion and Photon Beams, Los Angeles, June 1983.Google Scholar