Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:11:52.320Z Has data issue: false hasContentIssue false

Single-Pulse Coherent Raman Spectroscopy in Shock-Compressed Benzene

Published online by Cambridge University Press:  21 February 2011

D. S. Moore
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
S. C. Schmidt
Affiliation:
Dynamic Testing Division, Los Alamos National Laboratory, Los Alamos, NM 87545
D. Schiferl
Affiliation:
Dynamic Testing Division, Los Alamos National Laboratory, Los Alamos, NM 87545
J. W. Shaner
Affiliation:
Dynamic Testing Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Single-pulse backwards stimulated Raman and reflected broadband coherent anti-Stokes Raman spectroscopy (BSRS and RBBCARS) have been used to measure the vibrational frequency shifts of the 992 cm−1 ring-stretching mode of liquid benzene shock-compressed to pressures up to 1.2 GPa. The resulting shifts of ∼7.5 cm−1/GPa in the dynamic experiments are compared to spontaneous Raman scattering measurements of heated samples compressed in a diamond-anvil cell. RBBCARS was used to simultaneously measure the ring-stretching mode vibrational frequencies of liquid benzene / liquid perdeuterobenzene mixtures shock-compressed to pressures up to 1.53 GPa. Additional experiments that demonstrate the difficulty of using polarization sensitive coherent Raman techniques, such as Raman-induced Kerr effect spectroscopy (RIKES), in shock-compressed samples are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Keeler, R. N., Bloom, G. H. and Mitchell, A. C., Phys. Rev. Lett. 17, 852 (1966).Google Scholar
2. Bloom, G. H. and Keeler, R. N., J. Appl. Phys. 45, 1200 (1974).Google Scholar
3. Von Holle, W. G. in: Fast Reactions in Energetic Systems, Capellos, C. and Walker, R. F., eds. (D. Reidel, Dordrecht, Holland 1981) p. 485.Google Scholar
4. Ogilvie, K. M. and Duvall, G. E., J. Chem. Phys. 78, 1077 (1983).Google Scholar
5. Schulz, C., Linares, B., Cherville, J. and Poulard, S. in: Proc. Symp. Expl. and Pyrotech. 8th, Los Angeles, California 1974, AD-789 p. 49.Google Scholar
6. Tailleur, M. H. and Cherville, J., Propellants, Expl. and Pyrotech. 7, 22 (1982).CrossRefGoogle Scholar
7. Rice, M. H., McQueen, R. G., and Walsh, J. M., in: Solid State Physics 6, Seitz, F. and Turnbull, D., eds. (Academic Press, New York 1958) p. 1.Google Scholar
8. Dick, R. D., J. Chem. Phys. 52, 6021 (1970).Google Scholar
9. Schmidt, S. C., Moore, D. S., Schiferl, D. and Shaner, J. W., Phys. Rev. Lett. 50, 661 (1983).CrossRefGoogle Scholar
10. Moore, D. S., Schmidt, S. C., Schiferl, D. and Shaner, J. W., in: Proc. Los Alamos Conf. on Optics, Santa Fe, New Mexico 1983, (SPIE).Google Scholar
11. Moore, D. S., Schmidt, S. C. and Shaner, J. W., Phys. Rev. Lett. 50, 1819 (1983).Google Scholar
12. Maker, P. D. and Terhune, R. W., Phys. Rev. 137, A801 (1965).Google Scholar
13. Tolles, W. M., Nibler, J. W., McDonald, J. R. and Harvey, A. B., Appl. Spectrosc. 31, 253 (1977).Google Scholar
14. Roh, W. B., Schreiber, P. W. and Taran, J-P. E., Appl. Phys. Lett. 29, 174 (1976).Google Scholar
15. Valentini, J. J., Moore, D. S. and Bomse, D. S., Chem. Phys. Lett. 83, 217 (1981).Google Scholar
16. Eesley, G. L., Coherent Raman Spectroscopy (Pergamon Press, Oxford 1981).Google Scholar
17. Levenson, M. D. in: Chemical Applications of Nonlinear Raman Spectroscopy Harvey, A B., ed. (Academic Press, New York 1981) pp. 214222 Google Scholar
18. LeSar, R., Ekberg, S. A., Jones, L. H., Mills, R. L., Schwalbe, L. A., and Schiferl, D., Solid State Comm. 32, 131 (1979).Google Scholar
19. Akella, J. and Kennedy, G. C., J. Chem. Phys. 55, 793 (1971).Google Scholar