Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T00:53:13.475Z Has data issue: false hasContentIssue false

Single-Wall Carbon Nanotubes Field Emission Properties: A Theoretical Study of the Effects of Cs

Published online by Cambridge University Press:  01 February 2011

Brahim Akdim
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Kirtland Air Force Base, NM.
Xiaofeng Duan
Affiliation:
Aeronautical Systems Center Major Shared Resource Center for High Performance Computing, Wright-Patterson Air Force Base, OH
Donald A. Shiffler
Affiliation:
Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM.
Ruth Pachter*
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Kirtland Air Force Base, NM.
Get access

Abstract

Carbon nanotubes-based materials appeal for explosive emission, in forming cathode plasma, of interest for high-power microwave tubes. Cs intercalation has demonstrated a significant reduction of the work function of carbon nanotubes, thus improving field emission properties. An understanding of the detailed adsorption effects is important because the current saturation is attributed, in part, to adsorption mechanisms. In this paper, we report a density functional theory study of the effects of Cs on field emission of single-wall carbon nanotubes (SWCNTs), as an example of an approach to be taken for a fundamental understanding of such properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braidy, N., Botton, G, A., and Adronov, A., Nano Lett., 2, 1277 (2002)Google Scholar
2. Tarasov, B. P., Maehlen, J. P., Lototsky, M. V., Muradyan, V. E., and Yartys, V. A., J. Alloys and Compounds, 356–357, 510 (2003)Google Scholar
3. Bonard, J.-M, Croci, M., Klinke, C., Kurt, R., Noury, O., and Weiss, N., Carbon, 40, 1715 (2002)Google Scholar
4. Korenev, S., Conference Proceedings 650 (Beams 2002), 385 (2002)Google Scholar
5. Shiffler, D. A., Ruebush, M., Zagar, D., LaCour, M., Golby, K., Clark, M., Haworth, Collins, Michael, D., and Umstattd, R., IEEE Transactions on Plasma Science, 30, 1592 (2002)Google Scholar
6. Dean, K. A., and Chalamala, B. R., App. Phys. Lett., 76, 375 (2000)Google Scholar
7. Akdim, B., Duan, X., and Pachter, R., Nano Lett., 3, 1209 (2003)Google Scholar
8. Duan, X., Akdim, B., and Pachter, R., Encyclopedia of Nanoscience and Nanotechnology, Dekker, in press.Google Scholar
9. Bendiab, N., Righi, A., Anglaret, E., Sauvajol, J. L., Duclaux, , and Beguin, F., Chem. Phys. Lett., 339, 305 (2001)Google Scholar
10. Wadhawan, A., Stallcup, R. E. II, and Perez, J. M., Appl. Phys. Lett., 78, 108 (2001)Google Scholar
11. Suzuki, S., Bower, C., Matanabe, Y., and Zhou, O., Appl Phys. Lett., 76, 4007 (1999);Google Scholar
Suzuki, S., Bower, C., Kiyokura, , Nath, K. G., Matanabe, Y., and Zhou, O., J. Spectrosc. Relat. Phenom., 225, 114 (2001)Google Scholar
12. Huang, Y., Duan, X. F., Cui, Y., Lauhon, L. J., Kim, K.-H., and Lieber, C. M., Science, 294, 1313 (2001)Google Scholar
13. Tseng, G. Y., and Ellenbogen, J. C., Science, 294, 1293 (2001)Google Scholar
14. Collins, P. G., Zettl, A., Bando, H., Thess, A., and Smalley, R. E., Science, 278, 100 (1997)Google Scholar
15. Zhao, J., Han, J., and Lu, J. P., Phys. Rev. B, 65, 193401–1 (2002)Google Scholar
16. Li, J., Furuta, T., Goto, H., Ohashi, T., Fujiwara, Y., Yip, S., J. Chem. Phys., 119, (2003)Google Scholar
17. Delley, B., J. Chem. Phys., 113, 7756 (2000); implemented in DMOL3 by Accelyrs, Inc.Google Scholar
18. Maiti, A., Andzelm, J., Tanpipat, N., and Allen, P. V., Phys. Rev. Lett., 87, 155502 (2001)Google Scholar
19. Akdim, B., Duan, X., Adams, W. W., and Pachter, R., Phys. Rev. B., 67, 245404 (2003)Google Scholar
20. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996)Google Scholar
21. Avramov, P. V., Kudin, K. N., and Scuseria, G. E., Chem. Phys. Lett., 370, 597 (2003)Google Scholar
22. Basiuk, V. A., Nano Lett., 2, 835, (2002)Google Scholar
23. Hu, Z. P., Wu, N. J., and Ignatiev, A., Phys. Rev. B., 33, 7683 (1986)Google Scholar
24. Suzuki, S., Bower, C., and Zhou, O., Chem. Phys. Lett. 285, 230 (1998)Google Scholar
25. Jeong, G.-H., Farajian, A. A., Hirata, T., Hatakeyama, R., Tohji, K., Briere, T. M., Mizuseki, H., and Kawazoe, Y., Thin Solid Films, 435, 307 (2003)Google Scholar
26. Jeong, G.–H., Farajian, A. A., Hatakeyama, R., Hirata, T., Yaguchi, T., Tohji, K., Mizuseki, H., and Kawazoe, Y., Phys. Rev. B., 68, 075410 (2003)Google Scholar
27. Kim, D-H, Lee, H-R, Lee, M-W, Lee, J-H, Song, Y-H, Jee, J-J, and Lee, S-Y, Chem. Phys. Lett., 355, 53 (2002)Google Scholar
28. Hunt, R. C., Durston, P. J., and Palmer, R. E., Surface Science, 364, 266 (1996)Google Scholar