Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:19:46.815Z Has data issue: false hasContentIssue false

Size Control and Spectroscopic Characterization of Monolayer Protected Gold Nanoparticles Obtained by Laser Ablation in Liquids

Published online by Cambridge University Press:  26 February 2011

Giuseppe Compagnini
Affiliation:
gcompagnini@unict.it, University of Catania, Dpt. of Chemistry, Viale A. Doria 6, Catania, N/A, 95125, Italy, +39 095 7385077, +39 095 580138
Alfio Alessandro Scalisi
Affiliation:
ascalisi@unict.it, University of Catania, Chemistry, Italy
Orazio Puglisi*
Affiliation:
opuglisi@unict.it, University of Catania, Chemistry, Italy
*
* Corresponding Author: Orazio Puglisi, Tel. and Fax +39095221635; E-mail: opuglisi@unict.it
Get access

Abstract

In this paper we present a study on the formation of gold colloids by laser ablation of a gold metal target in alkanes and thiol-alkane solutions. The results show a decrease of the gold particles' size up to 2 nm when thiol molecules are present in the liquid environment. In summary, we observed that laser ablation of gold targets in thiol-alkane solutions leads to the formation of stable gold clusters with size smaller than those obtained in the corresponding pure alkane. This result is a consequence of the competition between the aggregation of gold species in the plume (which allows a gold embryo to be formed and to grow) and the tendency of the dispersed thiol molecules to bond at each embryo surface stopping their growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H.: Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111 (2000).Google Scholar
2. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H.: Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104, 8333 (2000).Google Scholar
3. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H.: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105, 5114 (2001).Google Scholar
4. Sakai, T., Takeda, Y., Mafuné, F., Abe, M., and Kondow, T.: Monitoring growth of surfactant-free nanodroplets dispersed in water by single-droplet detection. J. Phys. Chem. B 107, 2921 (2003).Google Scholar
5. Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T.: Nanoscale soldering of metal nano particles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686 (2003).Google Scholar
6. Simakin, A.V., Voronov, V.V., Shafeev, G.A., Brayner, R., and Bozon-Verduraz, F.: Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem. Phys. Lett. 348, 182 (2001).Google Scholar
7. Dolgaev, S.I., Simakin, A.V., Voronof, V.V., Shafeev, G.A., and Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186, 546 (2002).Google Scholar
8. Tsuji, T., Iryo, K., Nishimura, Y., and Tsuji, M.: Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II). J Photochem. Photobiol. A 145, 201 (2001).Google Scholar
9. Kabashin, A.V. and Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003).Google Scholar
10. Kabashin, A.V., Meunier, M., Kingston, C., Luong, J. H.T., J. Phys. Chem. B 107 (2003) 4527.Google Scholar
11. Compagnini, G., Scalisi, A.A., Puglisi, O., Phys. Chem. Chem. Phys. 4 (2002) 2787 Google Scholar
12. Mafuné, F. and Kondow, T.: Formation of small gold clusters in solution by laser excitation of interband transition. Chem. Phys. Lett. 372, 199 (2003).Google Scholar
13. Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T.: Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B 107, 4218 (2003).Google Scholar
14. Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T.: Dissociation and aggregation of gold nanoparticles under laser irradiation.J. Phys. Chem. B 105, 9050 (2001).Google Scholar
15. Compagnini, G., Scalisi, A.A., and Puglisi, O.: Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874 (2003).Google Scholar
16. Manna, A., Imae, T., Yogo, T., Aoi, K., Okazaki, M., Colloid, J. Interf. Sci. 256 (2002) 297.Google Scholar
17. Porter, M.D., Bright, T.B., Allara, D.L., Chidsey, C.E.D., J. Am. Chem. Soc. 109 (1987) 3559.Google Scholar
18. Pham, T., Jackson, J.B., Halas, N.J., Lee, T.R., Langmuir 18 (2002) 4915.Google Scholar
19. Jiang, P., Xie, S-S., Yao, J-N., Pang, S-J, and Gao, H-J., J. Physics D: Appl. Phys. 34 (2001) 2255.Google Scholar
[19] Yee, C.K., Ulman, A., Ruiz, J.D., Parikh, A., White, H., Rafailovich, M., Langmuir 19 (2003) 9450.Google Scholar
20. Yee, C.K., Ulman, A:, Ruiz, J.D., Parikh, A., White, H., Rafailovich, M., Langmuir 19 (2003) 9450 Google Scholar