Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T11:55:30.040Z Has data issue: false hasContentIssue false

Solid Bridging during Pattern Collapse (Stiction) Studied on Silicon Nanoparticles

Published online by Cambridge University Press:  01 March 2011

Daniel Peter
Affiliation:
Lam Research Corporation, SEZ Str. 1, 9500 Villach, Austria
Michael Dalmer
Affiliation:
Lam Research Corporation, SEZ Str. 1, 9500 Villach, Austria
Andriy Lotnyk
Affiliation:
Institute for Material Science, Christian-Albrechts-Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Lorenz Kienle
Affiliation:
Institute for Material Science, Christian-Albrechts-Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Alfred Lechner
Affiliation:
Microsystems Engineering, University of Applied Sciences Regensburg, Seybothstr. 2, 93049 Regensburg, Germany
Wolfgang Bensch
Affiliation:
Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth-Str. 2, 24118 Kiel, Germany
Get access

Abstract

The high surface to volume ratio of nanoparticles allows a detailed experimental study of the surface phenomena associated with solid bridging. Besides bulk analyses, the local view on the structure and composition via HRTEM is particularly essential. 50 nm core shell particles consisting of a silicon (Si) core and a SiO2 shell were used as model system to understand surface phenomena appearing for Si-based nanostructures. Evaporative drying from de-ionized water shows the most significant bridging effect based on SiO2. There is only a localized deposition of oxides between the particles during the drying process and no overall oxidation. For the deposition material, silicates are the most likely candidates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. De Marco, C., K., Wostyn, Bearda, T., Sano, K.-I., Kenis, K., Janssens, T., Leunissen, L. H. A., Eitoku, A., and Mertens, P.W., ECS Transactions, 11 (2) 87 (2007).Google Scholar
2. Cao, H., Nealey, P., and Domke, W., J. Vac. Sci. Technol. B, 18 (6), 3303 (2000).10.1116/1.1321280CrossRefGoogle Scholar
3. Mastrangelo, C. H., J. Microelectromech. S., 2(1), 33 (1993).Google Scholar
4. Komvopoulos, K., Wear, 200, 305 (1996).CrossRefGoogle Scholar
5. Alley, R. L., Cuan, G. J., Howe, R. T., and Komvopoulos, K., Solid-State Sensor and Actuator Workshop, 5th Technical Digest., (IEEE, Hilton Head Island, SC, 1992) pp. 202207.Google Scholar
6. Maboudian, R. and Howe, R. T., J. Vac. Sci. Technol. B, 15(1), 1 1997.10.1116/1.589247Google Scholar
7. Legtenberg, R., Tilmans, H. A. C., Elders, J., and Elwenspoek, M., Sensors and Actuators A, 43, 230 (1994).CrossRefGoogle Scholar
8. Stark, J. V., Park, D. G., Lagadic, I., and Klabune, K. J., Chem. Mater., 8 1904 (1996)Google Scholar
9. Patterson, A. L., Physical Review, 56, 978 (1939).Google Scholar
10. Rodriguez-Carvajal, J., Fullprof.2k, Version 4.6c – Mar 2002, Physica B, 55, 192 (1993).Google Scholar
11. Pelster, S. A., Kalamajka, R., Schrader, W., and Schüth, F., Angew. Chem., 119, 2349 (2007).Google Scholar
12. Schaack, B. B., Schrader, W., and Schüth, F., Angew. Chem., 120, 9232 (2008).CrossRefGoogle Scholar
13. Pelster, S. A., Schrader, W., and Schüth, F., J. Am. Chem. Soc., 128, 4310 (2006)Google Scholar
14. Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A., Yarmoff, J. A., and Hollinger, G., Physical Review B, 38(9), 6084 (1988).Google Scholar
15. Dupree, E. and Pettifer, R. F., Nature, 308(5), 523 (1984).CrossRefGoogle Scholar
16. Shao, W.-L., Shinar, J., and Gerstein, B. C., Phys. Rev. B, 41 (3), 9491 (1990).CrossRefGoogle Scholar