No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
We have investigated the kinetics of islanding during heteroepitaxy using a solid-on-solid Monte Carlo (SOS-MC) simulation. We simulate deposition by randomly depositing atoms onto a square grid with periodic boundary conditions. Arrhenius surface diffusion kinetics are dependent on the sum of a surface energy barrier (Ed) and the number of nearest neighbors multiplied by an adatom interaction strength (Eb). We confine growth to the first layer above the simple cubic substrate and investigate coverages < 1/2 monolayer. We monitor the evolution of film microstructure by producing island size distributions and plots which compare a cluster's area to perimeter ratio with that of a circle. We find that our simulation qualitatively correlates with results of classical film nucleation theory. A simple model is used to demonstrate the existence of a 'probabilistic nucleation barrier'.