Published online by Cambridge University Press: 25 February 2011
The implantation of Ti into LiNbO3 has been studied as a means of altering the optical index of refraction to produce optical waveguides. Implanting 2 × 1017 atoms/cm2 of 360-keV Ti at liquid nitrogen temperature produces a highly damaged region extending to a depth of about 4000 Å. Solid-phase epitaxial regrowth of the LiNbO3 can be achieved by annealing in a water-saturated oxygen atmosphere at 400°C, though complete removal of the residual damage usually requires temperatures in excess of 800°C. The solid-phase epitaxial regrowth rate exhibits an activation energy of 2 eV at doses below 3 × 1016 Ti/cm2, but both the regrowth rate and activation energy decrease at higher doses. At doses above 1 × 1017 Ti/cm2, the solid-phase epitaxial regrowth occurs only at temperatures above 800°C.
Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-ACO5-840R21400 with Marietta Energy Systems, Inc.