Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T09:08:56.588Z Has data issue: false hasContentIssue false

Solute Binding at Void Surfaces in Silicon and germanium

Published online by Cambridge University Press:  28 February 2011

S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. M. Bishop
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
H. J. Stein
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
W. R. Wampler
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

The strongly exothermic reactions of H and Cu with internal surfaces in Si and Ge were examined in experiments employing ion implantation, ion-beam analysis, transmission electron microscopy, and infrared spectroscopy. The dissociation energy of the Si-H surface bond was determined to be 2.6±0.1 eV, so that the monohydride is more stable than molecular H2, whose dissociation energy per atom is 2.26 eV. Initial experiments indicate a dissociation energy for the Ge-H surface bond of =1.9 eV. Copper is bound to the Si surface with an energy of 2.2±0.2 eV relative to solid solution, as compared to a reported binding energy of 1.5 eV for Cu in the precipitated Cu3Si phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myers, S.M., Follstaedt, D.M., Stein, H.J., and Wampler, W.R., Phys. Rev. B 45, 3914 (1992).Google Scholar
2. Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956).Google Scholar
3. Griffioen, C. C., Evans, J. H., De Jong, P. C. and Van Veen, A., Nucl. Instrum. Mein. B 27, 417 (1987).Google Scholar
4. Myers, S. M., Richards, P. M., Wampler, W. R., and Besenbacher, F., J. Nucl. Mater. 165, 9 (1989).Google Scholar
5. Follstaedt, D.M., Myers, S.M., Wampler, W.R., and Stein, H.J., in Proc. 50th Ann. Meeting of the Electron Micros. Soc, of Amer., edited by Bailey, G.W., Bentley, J. and Small, J.A. (San Francisco Press, 1992), pp. 334–5; Proc. 1992 Fall Meeting of the Mater. Res. Soc. in press.Google Scholar
6. Myers, S.M., Wampler, W.R., and Besenbacher, F., J. Appl. Phys. 56, 1561 (1984).Google Scholar
7. Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
8. YChabal, J., Surf. Sci. 168, 594 (1986).Google Scholar
9. Wampler, W.R. and Myers, S.M., Nucl. Instrum. Meth. B 7&8, 76 (1985).Google Scholar
10. Brower, K.L., Phys. Rev. B 42, 3444 (1990).Google Scholar
11. Walsh, R., Ace. Chem. Res. 14, 246 (1981).Google Scholar
12. Edwards, A.H., Phys. Rev. B 44, 1832 (1991); 1992, private communication.Google Scholar
13. Frank, R.C. and Thomas, J.E. Jr., J. Phys. Chem. Sol. 16, 144 (1960).Google Scholar
14. Weber, E.R., App. Phys. A 30, 1 (1983).Google Scholar