Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T04:16:14.844Z Has data issue: false hasContentIssue false

Solution of the Single-Site Aspherical Scattering Problem for the Dirac Equation

Published online by Cambridge University Press:  25 February 2011

Stephen C. Lovatt
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol. Tyndall Avenue, Bristol, England
B.L. Gyorffy
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol. Tyndall Avenue, Bristol, England
Guang-Yu Guo
Affiliation:
SERC Daresbury Laboratory, Warrington, Cheshire, England
Get access

Abstract

We study the scattering solutions of the Dirac equation numerically for anisotropic, finite range (warped muffin-tin), potentials. In particular, we calculate the partial-wave scattering matrix, ƒAA'(ε) and S-matrix SAA′(ε), for a potential characteristic of crystalline Silicon. We illustrate the consequences of aspherical scattering with reference to Silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Strange, P., Staunton, J. and Gyorffy, B.L.. J.Phys C 17, 3355 (1984).Google Scholar
2 Feder, R., Rosicky, F. and Ackermann, B.. J. Phys B 52, 31 (1983).Google Scholar
3 Schadler, G., Albers, R.C., Boring, A.M. and Weinburger, P.. Phys Rev B 4324(1987)Google Scholar
4 Drittler, B.H.. PhD Thesis, RWTH Aachen 1991 Google Scholar
5 Drittler, B.H., Weinert, W., Zeller, R. and Dederichs, P.H.. Solid State Commun 79, 31 (1991).CrossRefGoogle Scholar
6 Blaha, P., Schwarz, K., Sorantin, P. and Trickey, S. B.. Computer Phys Commun 59, 399 (1990).Google Scholar
7 Krewer, J.W. and Feder, R.. Solid State Commun 69, 87 (1989).Google Scholar
8 Gonis, A., Zhang, X.-G. and Nicholson, D.M.. Phys Rev B 40, 947 (1989).CrossRefGoogle Scholar
9 Loucks, T.L., The Augmented Plane Wave Method. (Benjamin, New York 1967)Google Scholar
10 Faulkner, J.S.. J.Phys C 10, 4661 (1977).Google Scholar
11 Ebert, H. and Gyorffy, B.L.. J.Phys F 18 451 (1988)CrossRefGoogle Scholar
12 Quantum, Schiff Mechanics. (McGraw-Hill Kogakusha, Tokyo 1968), p.320 Google Scholar
13 Friedel, J. Nuovo Cimento 7, 287 (1958).Google Scholar
14 Fukuda, N. and Newton, R.G.. Phys Rev 5 103(5) 1558(1956)Google Scholar
15 Newton, R.G.. Phys Rev Let 62, 1811 (1989).CrossRefGoogle Scholar
16 Guo, G.Y. and Temmerman, W. M., (This proceedings).Google Scholar
17 Altmann, S.L., Cracknell, A.P.. Rev Mod Phys 17(1) 19(1965)CrossRefGoogle Scholar