Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T04:53:40.628Z Has data issue: false hasContentIssue false

Solution Synthesis and Electrochemical Properties of V2O5 Nanostructures

Published online by Cambridge University Press:  01 February 2011

Katsunori Takahashi
Affiliation:
Materials Science and Engineering, University of Washington, 302 Roberts Hall Box 352120, Seattle WA 98195, USA Steel Research Laboratory, JFE Steel Corporation Kawasaki-cho, Chuo-ku, Chiba 260–0835, Japan
Ying Wang
Affiliation:
Materials Science and Engineering, University of Washington, 302 Roberts Hall Box 352120, Seattle WA 98195, USA
Kyoungho Lee
Affiliation:
Materials Science and Engineering, University of Washington, 302 Roberts Hall Box 352120, Seattle WA 98195, USA Division of Materials and Chemical Engineering, Soonchunhyang University, 646 Eupnae-Ri, Shinchang-Myun, Asan-Si, Chungnam, Korea
Guozhong Cao
Affiliation:
Materials Science and Engineering, University of Washington, 302 Roberts Hall Box 352120, Seattle WA 98195, USA
Get access

Abstract

We have prepared Ni-V2O5·nH2O core-shell nanocable arrays for Li+ intercalation applications. Ni-V2O5·nH2O nanocables were prepared via formation of Ni nanorod arrays through the template based electrochemical deposition, followed by coating of V2O5·nH2O on Ni nanorods through electrophoretic deposition. Transmission electron microscopy (TEM) micrograph clearly shows the Ni core was covered completely by a V2O5·nH2O shell. Electrochemical analysis demonstrates that in a current density of 1.6 A/g, the Li+ intercalation capacity of Ni-V2O5·nH2O nanocable array is approximately 10 times higher than that of single-crystal V2O5 nanorod array and 20 times higher than that of sol-gel-derived V2O5 film. Both energy density and power density of such nanocable-array electrodes are higher than the V2O5 film electrode by at least one order of magnitude. Such significant improvement in electrochemical performance is due to the large surface area and short diffusion path offered by the nanostructured V2O5·nH2O.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCE

1. Conway, B. E., “Electrochemical Supercapacitors”, Plenum, New York, 1999.Google Scholar
2. Legrand, A.P., Flandrois, S. (ed.), “Chemical Physics of Intercalation”, Plenum, New York, 1987.Google Scholar
3. Murphy, D.W., Christian, P.A., Disalvo, F.J., Waszczak, J.W., Inorg. Chem. 24, 1782, (1985).Google Scholar
4. Portiron, E., Salle, A. L., Varbaere, A., Piffard, Y., Guyomard, D., Electrochi, Acta 45, 197 (1999).Google Scholar
5. Lantelme, F., Mantoux, A., Groult, H., Lincot, D., J. Electrochem. Soc. 150, A1202 (2003).Google Scholar
6. Coustier, F., Hill, J., Owens, B.B., Passerini, S., Smyrl, W. H., J. Electrochem. Soc. 146, 1355 (1999).Google Scholar
7. Livage, J., Chem. Mater. 3, 578 (1991).Google Scholar
8. Cao, G.Z., “Nanotructures and Nanomaterials”, Imperial College Press, London, 2004.Google Scholar
9. Patrissi, C. J., Martin, C. R., J. Electrochem. Soc. 146, 3176 (1999).Google Scholar
10. Takahashi, K., Limmer, S. J., Cao, G. Z., Proc. SPIE 5224, 33 (2003).Google Scholar
11. Takahashi, K., Limmer, S. J., Wang, Y., Cao, G. Z., Jpn. J. Appl. Phys., in press.Google Scholar
12. Takahashi, K., Limmer, S. J., Wang, Y., Cao, G. Z., J. Phys. Chem. B108, 9795 (2004).Google Scholar
13. Parent, M. J., Passerini, S., Owens, B. B., Smyrl, W. H., J. Electrochem. Soc. 146, 1346 (1999).Google Scholar
14. Kudo, T., Ikeda, Y., Watanabe, T., Hibino, M., Miyayama, M., Kajita, K., Solid State Ionics 152–153, 833 (2002).Google Scholar
15. Fontenot, C. J., Wiench, J. W., Pruski, M., Schrader, G. L., J. Phys. Chem. B104, 11622 (2000).Google Scholar
16. Limmer, S. J., Seraji, S., Forbess, M. J., Wu, Y., Chou, T. P., Nguyen, C., Cao, G‥ Z., Adv. Mater. 13, 1269 (2001).Google Scholar
17. Limmer, S. J., Seraji, S., Forbess, M. J., Wu, Y., Chou, T. P., Cao, G‥ Z., Adv. Funct. Mater. 12, 59 (2002).Google Scholar
18. Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solution,” Pergamon Press, New York, 1966.Google Scholar
19. Liu, Y.J., Cowen, J. A., Kaplan, T. A., DeGroot, D. C., Kanatzidis, M. G., Chem. Mater. 7, 1616 (1995).Google Scholar
20. Dong, W., Rolison, D. R., Dunn, B., Electrochem. Solid-State Lett. 3, 457 (2000).Google Scholar
21. Jang, J. H., Han, S., Hyeon, T., Oh, S. M., J. Power Sources 123, 79 (2003).Google Scholar
22. Park, H. K., Smyrl, W. H., and Ward, M. D., J. Electrochem. Soc. 142, 1068 (1995).Google Scholar
23. Wang, J., Curtis, C. J., Schulz, D. L., and Zhang, J. G., J. Electrochem. Soc. 151, A1 (2004).Google Scholar