Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:00:01.583Z Has data issue: false hasContentIssue false

Some Applications of Spin Precession Methods to Problems in Materials Science

Published online by Cambridge University Press:  15 February 2011

E. N. Kaufmann*
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974USA
Get access

Abstract

Nuclear and electron resonance and the Mössbauer effect are techniques which observe the interaction of moments with fields directly in the energy domain. An energy splitting, however, also implies the precession of the moment in the field. When a means exists to determine the orientation of the moment then the precession can be observed in the time domain. The direction of radiation emitted in a nuclear, muonic or atomic decay is correlated to the direction of corresponding moments (spins) and can thus act as a detector of spin precession. In the language of nuclear, muonic and atomic physics, these methods are called perturbed angular correlations (PAC), muonic spin rotation, and quantum beats, respectively. Below, these methods will be illustrated by displaying some examples of the application of perturbed angular correlations to a variety of materials systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frauenfelder, H. and Steffen, R. M. in: Alpha-, Beta-, and Gamma-ray Spectroscopy, Siegbahn, K. ed. (North-Holland Publ. Co., Amsterdam, 1965) p. 997.Google Scholar
1a deGroot, S. R., Tolkoek, H. A. and Huiskamp, W.J. in: Alpha-, Beta-, and Gamma-ray Spectroscopy, Siegbahn, K. ed. (North-Holland Publ. Co., Amsterdam, 1965), p. 1199.Google Scholar
1b Gill, R. D., Gamma Ray Angular Correlations (Academic Press, New York, 1975).Google Scholar
1c Hamilton, W. D., ed., The Electromagnetic Interaction in Nuclear Spectroscopy (North-Holland Publ. Co., Amsterdam, 1975).Google Scholar
2. Matthias, E. and Shirley, D. A., eds., Hyperfine Structure and Nuclear Radiations (North-Holland Publ. Co., Amsterdam, 1968).Google Scholar
2a vanKrugten, H. and vanNooijen, B., eds., Angular Correlations in Nuclear Disintegration (Rotterdam Univ. Press, Wolters-Noordhoff Publ., Groningen, 1971).CrossRefGoogle Scholar
2b Goldring, G. and Kalish, R., eds., Hyperfine Interactions in Excited Nuclei (Gordon and Breach, London, 1971).Google Scholar
2c Karlsson, E. and Wäppling, R., eds., Hyperfine Interactions Studied in Nuclear Reactions and Decay (Almqvist & Wiksell International, Stockholm, 1975).Google Scholar
2d Coussement, R., Rots, M. and Vanneste, L., eds., Hyperfine Interactions 2 (1976).Google Scholar
2e Raghavan, R. S. and Murnick, D. E., eds., Hyperfine Interactions 4 (1978).Google Scholar
2f Gygax, F. N., Kundig, W. and Meier, P. F., eds., Hyperfine Interactions 6 (1979).Google Scholar
2g Haas, H. and Kaindl, G., eds., Hyperfine Interactions, to be published (conf. in Berlin, July, 1980).Google Scholar
2h Brewer, J. H. and Percival, P. W., eds., Hyperfine Interactions, to be published (conf. in Vancouver, August 1980).Google Scholar
3. Raghavan, P. and Raghavan, R. S., Phys. Rev. Letters 27, 724 (1971).CrossRefGoogle Scholar
4. Kaufmann, E. N. and McWhan, D. B., Phys. Rev. B 8, 1390 (1973).CrossRefGoogle Scholar
5. Raghavan, P., Senba, M. and Raghavan, R. S., Phys, Rev. Letters 39, 1547 (1977).CrossRefGoogle Scholar
6. Kaufmann, E. N., Raghavan, P., Raghavan, R. S., Krien, K., Ansaldo, E. J. and Naumann, R.A., in: Applications of Ion Beams to Metals, Picraux, S. T., EerNisse, E. P. and Vook, F. L., eds. (Plenum Press, New York, 1974) p. 379.CrossRefGoogle Scholar
7. Table of lsotopes, Lederer, C. M. and Shirley, V. S. eds. (John Wiley & Sons, New York, 1978) p. 516 ff.Google Scholar
8. Kaufmann, E. N., Raghavan, P., Raghavan, R. S Ansaldo, E. J. and Naumann, R. A., Phys. Rev. Letters 34, 1558 (1975).Google Scholar
9. Kaufmann, E. N., Kalish, R., Naumann, R. A. and Lis, S., J. Appl. Phys. 48, 3332 (1977).Google Scholar
10. Buene, L., Kaufmann, E. N., McDonald, M. L., Kothaus, J., Vianden, R., Freitag, K., Draper, C. W., this volume.Google Scholar