Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-21T16:40:10.936Z Has data issue: false hasContentIssue false

Spectral Calibrated and Confocal Photoluminescence of Cu2S Thin-Film Absorber

Published online by Cambridge University Press:  28 August 2013

Hendrik Sträter
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
Rudolf Brüggemann
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
Sebastian Siol
Affiliation:
Fachbereich 11, Materialwissenschaft, Fachgebiet Oberflächenforschung, Technische Universität Darmstadt, D-64287 Darmstadt, Germany.
Andreas Klein
Affiliation:
Fachbereich 11, Materialwissenschaft, Fachgebiet Oberflächenforschung, Technische Universität Darmstadt, D-64287 Darmstadt, Germany.
Wolfram Jaegermann
Affiliation:
Fachbereich 11, Materialwissenschaft, Fachgebiet Oberflächenforschung, Technische Universität Darmstadt, D-64287 Darmstadt, Germany.
Gottfried H. Bauer
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
Get access

Abstract

We have studied Cu2S absorber layers prepared by physical vapor deposition (PVD) by calibrated spectral photoluminescence (PL) and by confocal PL as function of temperature T and excitation fluxes to obtain the absolute PL-yield at an excitation flux equivalent to the AM1.5 spectrum and to calculate the splitting of the quasi-Fermi levels (QFL) µ = Ef,n-Ef,p and the absorption coefficient α(E), both in the temperature range 20 K ≤ T ≤ 400 K. The PL-spectra reveal two peaks at E1 = 1.17 eV and E2 = 1.3 eV, of which the low energy peak is only detectable at temperatures T < 200 K. The samples show an impressive QFL-splitting of µ > 700 meV at 300 K associated with a pseudo band gap of Eg = 1.25 eV. The high energy peak shows an unexpected temperature behavior, namely an increase of the PL-yield with rising temperature at variance with the behavior of QFL-splitting that decreases with rising T from extrapolated T = 0K value of µ = 1.3 eV. The PL-yield versus temperature will be discussed in terms of different defect states in the band gap. Our observations indicate that, contrary to common believe, it is not the PL-yield, but rather the QFL-splitting that is the comprehensive indicator of the quality of the excited state in an illuminated semiconductor. A further examination of the lateral variation of the opto-electronic properties by confocal PL shows a strong correlation between the QFL-splitting, the Urbach energy EU and the optical band gap Eopt, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wadia, C., Alivisatos, A.P., Kammen, D.M., Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle Scholar
Reynolds, D.C., Leies, B.M., Antes, L.L., Marburger, R.E., Phys. Rev. 96, 533 (1954).CrossRefGoogle Scholar
Hall, R. B., Birkmire, R. W., Phillips, J. E., Meakin, J. D., Appl. Phys. Lett. 38, 925 (1981).CrossRefGoogle Scholar
Würfel, P., J.Phys C 15, 3967 (1982).CrossRefGoogle Scholar
Siol, S., Sträter, H., Brüggemann, R., Klein, A., Bauer, G.H., Jaegermann, W. presented at the 2013 MRS Spring Meeting in San Francisco, 2013 (unpublished).Google Scholar
Mansour, B.A., phys. status solidi (a) 136, 153 (1993).CrossRefGoogle Scholar
Shibata, H., Jpn. J. Appl. Phys. 37, 550 (1998).CrossRefGoogle Scholar
Dumke, W.P., Phys. Rev. 132, 1998 (1963).CrossRefGoogle Scholar
Pankove, J.J., Optical Processes in Semiconductors (Dover, New York, 1972), ch. 6.CrossRefGoogle Scholar
Schmidt, T., Lischka, K., Zulehner, W., Phys. Rev. B 45, 8989 (1992).CrossRefGoogle Scholar
Siebentritt, S. in Wide-Gap Chalcopyrites, edited by Siebentritt, S., Rau, U. (Springer-Verlag, Berlin Heidelberg, 2006), ch. 7.CrossRefGoogle Scholar
Kurik, M.V., phys. status solidi (a) 8, 9 (1971).CrossRefGoogle Scholar