Hostname: page-component-6bf8c574d5-xtvcr Total loading time: 0 Render date: 2025-02-22T16:24:52.894Z Has data issue: false hasContentIssue false

Stm Topographical Images of C60

Published online by Cambridge University Press:  28 February 2011

Zhouhang Wang
Affiliation:
Department of Chemistry and the Ontario Laser and Lightwave Research Centre, University of Toronto, Toronto M5S 1A1, Canada.
Ping Zhang
Affiliation:
Department of Chemistry and the Ontario Laser and Lightwave Research Centre, University of Toronto, Toronto M5S 1A1, Canada.
M. Moskovits
Affiliation:
Department of Chemistry and the Ontario Laser and Lightwave Research Centre, University of Toronto, Toronto M5S 1A1, Canada.
Get access

Abstract

STM topographical images of C60 are reported. The images are consistent with a molecule approximately 9 Å in diameter possessing the now-famous soccer ball structure. With the molecule deposited on gold, its atomic structure is not resolved. On graphite the structure of the within the borders of the C60 molecule is dominated by that of the graphite forming a moiré-like pattern. Some evidence of atomic structure is seen in multilayers of C60 where some five- and six-membered rings are visible. These may, however, be features of fragments of the fullerene rather than whole molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bochvar, D. A and Gal’pern, E. G., Dokl. Akad. Nauk. SSSR., 209, 610 (1973); 209, 239 (1973), English Trans.;Google Scholar
Jones, D. E. H., New ScL 245, 118 (1966);Google Scholar
Osawa, E., Kagaku, 25, 854 (1970).Google Scholar
2. Haymet, A. D. J., J. Amer. Chem. Soc. 106, 319 (1986).Google Scholar
3. Kroto, H., Science. 242, 1139 (1988).Google Scholar
4. Curl, R. F. and Smalley, R. E., ibid, p. 1017.Google Scholar
5. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. and Smalley, R. E., Nature. 318, 162 (1985).Google Scholar
6. Yang, S. H., Pettiette, C. L., Conceicao, J., Cheshnovsky, O. and Smalley, R. E., Chem. Phys. Lett., 139, 233 (1987).Google Scholar
7. Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O’Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F. and Smalley, R. E., J. Phys. Chem., 1990, 94, 8634.Google Scholar
8. Krätchmer, W., Fostiropoulos, K. and Huffman, D. R., Chem. Phys. Lett., 170, 167 (1990);Google Scholar
Krätchmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R., Nature. 347, 354 (1990).Google Scholar
9. Taylor, R., Hare, J. P., Abdul-Sada, A. K. and Kroto, H. W., unpublished;Google Scholar
Ajie, J., Alvarez, M. M., Anz, S. J., Beck, R. D., Diederich, F., Fostiropoulos, K., Krätchmer, W., Rubin, Y., Sensharma, D. and Whetten, R. L.. J. Phys. Chem. (in press): and ref. 8.Google Scholar
10. Humbert, A., Dayez, M., Sangay, S., Chapon, C. and Henry, C. R., J. Vac. Sci. Technology., 8, 311 (1990).Google Scholar