Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:16:09.806Z Has data issue: false hasContentIssue false

Strained Si-based Nanomembrane Materials

Published online by Cambridge University Press:  01 February 2011

Shelley A. Scott
Affiliation:
sscott@cae.wisc.edu, University of Wisconsin-Madison, Materials Science and Engineering, Engineering Research Building, 1500 Engineering Drive, Madison, WI, 53706, United States, 608-265-4119
Michelle M. Roberts
Affiliation:
mroberts@cae.wisc.edu, University of Wisconsin-Madison, Madison, WI, 53706, United States
Donald E. Savage
Affiliation:
dsavage@wisc.edu, University of Wisconsin-Madison, Madison, WI, 53706, United States
Max G. Lagally
Affiliation:
lagally@engr.wisc.edu, University of Wisconsin-Madison, Madison, WI, 53706, United States
Get access

Abstract

Application of tensile strain to the Si(100) lattice is known to enhance carrier mobility in field effect transistors through modification of the Si band structure. Si is conventionally placed under tensile strain using methods such as Si3N4 capping for strained channel devices, and epitaxial growth of Si on a strain graded SiGe substrate for large area strain. The latter case preserves and propagates threading dislocations, and both cases require use of a bulk rigid substrate, which prohibits the use of strained Si in applications such as flexible electronics, or indeed in any application where strained Si is desirable on a non-epitaxial substrate. Elastically strained, single-crystal, Si-based nanomembranes, in which the release of a Si/SiGe/Si heterostructure from its growth substrate allows elastic strain sharing between the layers, circumvent these issues. These nanomembranes are extremely flexible, virtually dislocation-free, and transferable to almost any other surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Leitz, C. W., Currie, M. T., Lee, M. L., Cheng, Z.-Y., Antoniadis, D. A., and Fitzgerald, E. A., J. Appl. Phys. 92, 3745 (2002).Google Scholar
[2] Rim, K., Chan, K., Shi, L., Boyd, D., Ott, J., Klymko, N., Cardone, F., Tai, L., Koester, S., Cobb, M., Canaperi, D., To, B., Duch, E., Babich, I., Carruthers, R., Saunders, P., Walker, G., Zhang, Y., Steen, M., and Ieong, M., IEDM Tech. Digest 3.1.1, (2003).Google Scholar
[3] Schäffler, F., Semicond. Sci. and Technol. 12, 1515 (1997).Google Scholar
[4] Ismail, K., Legoues, F. K., Saenger, K. L., Arafa, M., Chu, J. O., Mooney, P. M., and Meyerson, B. S., Phys. Rev. Lett. 73, 3447 (1994).Google Scholar
[5] Rim, K., Hoyt, J. L., and Gibbons, J. F., IEEE Trans. Electron Devices 47, 1406 (2000).Google Scholar
[6] Fitzgerald, E. A., Xie, Y.-H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
[7] Gallas, B., Hartmann, J. M., Berbezier, I., Abdallah, M., Zhang, J., Harris, J. J., and Joyce, B. A., J. Cryst. Growth 201/202, 547 (1999).Google Scholar
[8] Brown, A. S., J. Vac. Sci. Technol. B 16, 2308 (1998).Google Scholar
[9] Hobart, K. D., Kub, F. J., Fatemi, M., and Twigg, M. E., J. Electron. Mater. 29, 897 (2000).Google Scholar
[10] Mooney, P. M., Cohen, G. M., Chu, J. O., and Murray, C. E., Appl. Phys. Lett. 84, 1093 (2004).10.1063/1.1646464Google Scholar
[11] Roberts, M. M., Klein, L. J., Savage, D. E., Slinker, K. A., Friesen, M., Celler, G. K., Eriksson, M. A., and Lagally, M. G., Nature Materials 5, 388 (2006).Google Scholar
[12] Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
[13] Houghton, D. C., J. Appl. Phys. 70, 2136 (1991).Google Scholar
[14] Qin, H., Shaji, N., Merrill, N. E., Kim, H. S., Toonen, R. C., Blick, R. H., Roberts, M. M., Savage, D. E., Lagally, M. G., and Celler, G. K., New J. Phys. 7, 241 (2005).Google Scholar
[15] Prinz, V. Y., Seleznev, V. A., Gutakovsky, A. K., Chehovskiy, A. V., Preobrazhenskii, V. V., Putyato, M. A., and Gavrilova, T. A., Physica E 6, 828 (2000).10.1016/S1386-9477(99)00249-0Google Scholar
[16] Mendach, S., Songmuang, R., Kiravittaya, S., Rastelli, A., Benyoucef, M., and Schmidt, O. G., Appl. Phys. Lett. 88, 111120 (2006).Google Scholar
[17] Yuan, H.-C., Ma, Z. Q., Roberts, M. M., Savage, D. E., and Lagally, M. G., J. Appl. Phys. 100, 013708 (2006).Google Scholar
[18] Menard, E., Nuzzo, R. G., and Rogers, J. A., Appl. Phys. Lett. 86, 093507 (2005).Google Scholar
[19] Freund, L. B. and Suresh, S., Thin Film Materials, Cambridge University Press, 2003 Google Scholar
[20] Yuan, H.-C., Roberts, M. M., Savage, D. E., Lagally, M. G., and Ma, Z. Q., 2005 International Semiconductor Device Research Symposium 207 (2005).Google Scholar
[21] van Houten, H., Williamson, J. G., Broekaart, M. E. I., Foxon, C. T., and Harris, J. J., Phys. Rev. B 37, 2756 (1988).Google Scholar
[22] Beenakker, C. W. J. and van Houten, H., Solid State Phys. 44, 1 (1991).10.1016/S0081-1947(08)60091-0Google Scholar
[23] Menard, E., Lee, K. J., Khang, D.-Y., Nuzzo, R. G., and Rogers, J. A., Appl. Phys. Lett. 84, 5398 (2004).Google Scholar
[24] Ahn, J.-H., Kim, H.-S., Lee, K. J., Zhu, Z., Menard, E., Nuzzo, R. G., and Rogers, J. A., IEEE Electron Device Lett. 27, 460 (2006).Google Scholar
[25] Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M. E., and Rogers, J. A., Adv. Mater. 16, 2097 (2004).Google Scholar
[26] Mizuno, T., Sugiyama, N., Tezuka, T., Moriyama, Y., Nakaharai, S., and Takagi, S., IEEE Trans. Electron Devices 52, 367 (2005).Google Scholar