Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T00:58:38.617Z Has data issue: false hasContentIssue false

Strain-Field Induced Crosshatch Formation During Molecular Beam Epitaxy of InGaAs/GaAs Films

Published online by Cambridge University Press:  15 February 2011

X. C. Zhou
Affiliation:
NanoFAB Center, Engineering/Physics Building, Texas A&M University College Station, TX 77843-4242, USA Laboratory for Surface Physics, Chinese Academy of Sciences P.O. Box 603-8, Beijing 100080, P.R. China
J. Jiang
Affiliation:
Laboratory for Surface Physics, Chinese Academy of Sciences P.O. Box 603-8, Beijing 100080, P.R. China Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences P.O. Box 2724, Beijing 100080, P.R. China
A. Y. Du
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences P.O. Box 2724, Beijing 100080, P.R. China
J. W. Zhao
Affiliation:
Laboratory for Surface Physics, Chinese Academy of Sciences P.O. Box 603-8, Beijing 100080, P.R. China Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences P.O. Box 2724, Beijing 100080, P.R. China
S. M. Mu
Affiliation:
Laboratory for Surface Physics, Chinese Academy of Sciences P.O. Box 603-8, Beijing 100080, P.R. China
L.-M. Peng
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences P.O. Box 2724, Beijing 100080, P.R. China
Z. T. Zhong
Affiliation:
Laboratory for Surface Physics, Chinese Academy of Sciences P.O. Box 603-8, Beijing 100080, P.R. China
Get access

Abstract

Using reflection electron microscopy (REM), transmission electron microscopy (TEM), and Nomarski optical microscopy we obtained direct evidence that local surface strain-fields, originated from misfit dislocations, are responsible for the formation of morphological crosshatches during molecular beam epitaxy of lattice mismatched InGaAs/GaAs layers. A mechanism is proposed to correlate the formation of the crosshatched patterns with the variation of the growth rate across the epitaxial surface under the perturbation of network shaped strain-fields in the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cho, A. Y., J. Crystal Growth 111(1–4), 1 (1991).Google Scholar
2 Osbum, G. C., J. Vac. Sci. Technol. B1, 379 (1983).Google Scholar
3 Ballingall, J. M., Ho, P., Tessmer, G. J., Martin, P. A., Lewis, N., and Hall, E. L., Appl. Phys. Lett. 54(21), 2121 (1989).Google Scholar
4 Chen, T. R., Eng, L., Zhao, B., Zhuang, Y. H., Sanders, S., Morkoc, H., and Yariv, Amnon, IEEE J. Quantum Electron. 26(7), 1183 (1990).Google Scholar
5 Olsen, G. H., J. Crystal Growth 31, 223 (1975).CrossRefGoogle Scholar
6 Chang, Kevin H., Gibala, Ronald, Srolovitz, David J., Bhattacharya, Pallab K., and Mansfield, John F., J. Appl. Phys. 67(9), 4093 (1990).Google Scholar
7 Fitzgerald, E. A., Xie, Y.-H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weir, B. E., J. Vac. Sci. Technol. B10(4), 1807 (1993).Google Scholar
8 Hirsch, P. B., Howie, A, Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals, Butterworths, London (1977).Google Scholar
9 Hull, R. and Bean, J. C., Semiconductors and Semimetals, vol.33, Chapter 1, Pearsall, T. P., ed., Academic Press, New York (1991).Google Scholar
10 Matthews, J. W. and Blakeslee, A. E., J. Crystal. Growth 27, 118 (1974).Google Scholar
11 Ilegems, M., The Technology and Physics of Molecular Beam Epitaxy, Chapter 5, Parker, E. H. C., ed. Plenum Press, New York (1985).Google Scholar
12 Peng, L-M., Du, A., Jiang, J., and Zhou, X. C., submitted to Phil. Mag. Lett.Google Scholar
13 Osakabe, N., Tanishiro, Y., Yagi, K., and Honjo, G., Surf. Sci., 102, 424 (1981).Google Scholar
14 Cowley, J. M., Prog. Surface Sci., 21(3), 209 (1986).Google Scholar
15 Ghaisas, S. V. and Madhukar, A., J. Vac. Sci. Technnol. B7(2), 264 (1989).Google Scholar
16 Yoffe, E. H., Phil. Mag., 5, 161 (1960).Google Scholar
17 Shaibani, S. J. and Hazzledine, P. M., Phil. Mag., A44, 657 (1981).Google Scholar
18 Timosbenko, S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York, (1951).Google Scholar
19 Hata, M., Isun, T. Watanabe, A., and Katayama, Y., J. Vac. Sci. Technnol. B8(4), 692 (1990).Google Scholar
20 Ohta, K., Kojima, T., and Nakagawa, T., J. Crystal Growth 95(1), 71 (1989).Google Scholar