Published online by Cambridge University Press: 25 February 2011
The effect of oxygen content of silicon nitride powders on the properties of resulting ceramics was studied by physically and chemically treating the powder to modify its surface oxygen content. These powders were compounded with yttria and hot-pressed into dense ceramics. Strength and oxidation resistance of these ceramics were measured and correlated with the powder and ceramic compositions as well as the resulting intergranular phases. Results showed that the phases varied with slight differences in the initial powder oxygen content as predicted, and that strength could be correlated to initial oxygen concentration. Best results were obtained when the oxygen content was increased by thermal oxidation. A Taguchi Methods experimental study designed to optimize the thermal treatment resulted in silicon nitride ceramics with strength improvements of 22 and 37% at ambient temperature and 1370°C, respectively. Oxidation resistance was also improved.
Research sponsored by the U. S. Department of Energy, Assistant Secretary for Conservation and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Materials Development Program under contract DE-AC05-840R21400 with Martin-Marietta Energy Systems, Inc.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.