Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T12:03:15.871Z Has data issue: false hasContentIssue false

Stress and Phase Engineered ZrO2/Ge for High-k Dielectric Applications

Published online by Cambridge University Press:  08 May 2015

Narayan K. V. L.V. Achari
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-12, India. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-12, India.
Amiya Banerjee
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-12, India.
Srinivasan Raghavan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-12, India. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-12, India.
Get access

Abstract

ZrO2/Ge is potential high-k dielectric candidate to replace silicon based devices. Controlling stress in zirconia film and stabilizing high dielectric constant phase is crucial for high-k application. A precise control of stress and phase selectivity in high-k thin films is demonstrated. Thin films of ZrO2 were grown by reactive sputter deposition. Wide range of growth stress in thin films from -0.3 to -2.8 GPa can be tuned by growth rate control. Adatom incorporation into grain boundary was the dominant source of observed stress. Phase selectivity in zirconia was achieved by tuning growth parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ieong, M., Doris, B., Kedzierski, J., Rim, K. and Yang, M. Science 2004, 306, (5704), 2057–60.CrossRefGoogle Scholar
Robertson, J. Eur. Phys. J. Appl. Phys. 2004, 28, 265291.CrossRefGoogle Scholar
Robertson, J. J. Non-Cryst. Solids 2002, 303, 94100.CrossRefGoogle Scholar
Lundstrom, M. S. IEEE ELECTR DEVICE L 1997, 18, (7), 361363.CrossRefGoogle Scholar
Lammers, D., Chips go back to the future. EE Times: 2003; Vol. 2003, pp 57.Google Scholar
Chui, C. O., Ramanathan, S., Triplett, B. B., McIntyre, P. C. and Saraswat, K. C. IEEE ELECTR DEVICE L 2002, 23, (8), 473475.CrossRefGoogle Scholar
Saraswat, K. C., Chui, C. O., Krishnamohan, T., Kim, D., Nayfeh, A. and Pethe, A. Mater. Sci. Eng., B. 2006, 135, 242249.CrossRefGoogle Scholar
Germanium-based technologies: From materials to devices. Elsevier Science: 2011.Google Scholar
Ieong, M., Narayanan, V., Singh, D., Topol, A., Chan, V., Ren, Z. and Cmos, C. Mater. Today 2006, 9, (6), 2631.CrossRefGoogle Scholar
Kamata, Y., Kamimuta, Y., Ino, T. and Nishiyama, A. Jpn. J. Appl. Phys. 2005, 44, (4B), 23232329.CrossRefGoogle Scholar
Ngai, T., Qi, W. j., Sharma, R., Fretwell, J., Chen, X., Lee, J. C. and Banerjee, S. Appl. Phys. Lett. 2000, 76, (4), 502504.CrossRefGoogle Scholar
Perkins, C. M., Triplett, B. B., McIntyre, P. C., Saraswat, K. C., Haukka, S. and Tuominen, M. Appl. Phys. Lett. 2001, 78, (16), 23572357.CrossRefGoogle Scholar
Wen-Jie, Q., Nieh, R., Lee, B. H., Kang, L., Jeon, Y. and Lee, J. C. Appl. Phys. Lett. 2000, 77, (20).Google Scholar
Ramanathan, S., Muller, D. A., Wilk, G. D., Park, C. M. and McIntyre, P. C. Appl. Phys. Lett. 2001, 79, (20), 33113313.CrossRefGoogle Scholar
Sigmund, P. Thin Solid Films 2012, 520, (19), 60316049.CrossRefGoogle Scholar
Pitcher, M. W., Ushakov, S. V., Navrotsky, A., Woodfield, B. F., Li, G. S., Boerio-Goates, J. and Tissue, B. M. J. Am. Chem. Soc. 2005, 88, (1), 160167.Google Scholar
Garvie, R. C. J. Phys. Chem. 1978, 82, (2), 218224.CrossRefGoogle Scholar
Zhao, X. and Vanderbilt, D. Phys. Rev. B. 2002, 65, (7), 075105075105.CrossRefGoogle Scholar
Kim, H., Chi, D., McIntyre, P. C. and Saraswat, K. C. IEEE T ELECTRON DEV 2006, 53, (7), 15091516.Google Scholar
Floro, J. A., Chason, E., Lee, S. R., Twesten, R. D., Hwang, R. Q. and Freund, L. B. J. Electron. Mater. 1997, 26, (9), 969979.CrossRefGoogle Scholar
Stoney, G. G. Proc. R. Soc. Lond. A 1909, 82, (553), 172175.CrossRefGoogle Scholar
Narayanachari, K. V. L. V. and Raghavan, S. J. Appl. Phys. 2012, 112, (7), 074910074910.CrossRefGoogle Scholar
Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. and Hearne, S. J. Phys. Rev. Lett. 2002, 88, (15), 156103.CrossRefGoogle Scholar
Narayanachari, K. V. L. V. and Raghavan, S. To be published.Google Scholar
Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. and Hearne, S. Phy. Rev. Lett. 2002, 88, (15), 14.CrossRefGoogle Scholar
Whitney, E. D. J. Amer. Ceram. Soc 1962, 45, (12), 612613.CrossRefGoogle Scholar
Fischer, D. and Kersch, A. Appl. Phys. Lett. 2008, 92, (1), 012908.CrossRefGoogle Scholar