Article contents
Stress Ratio Effect on Fatigue Behavior of Aircraft Aluminum Alloy 2024 T351
Published online by Cambridge University Press: 01 February 2011
Abstract
Aluminum alloy series 2xxx, 6xxx, 7xxxx and 8xxx enjoy the widest use in aircraft structural applications. Among these materials, aluminum alloy 2024 remains the most commonly used and especially in T351 temper situation. The fatigue crack propagation behaviour of aluminum alloy 2024 T351 has been investigated using V-notch specimen in four bending test. A series of stress ratios from 0.10 to 0.50 was investigated in order to observe the influence of stress ratio on the fatigue life and fatigue crack growth rate (FCGR). The increase in FCGR, which occurs as the stress ratio is increased from 0.10 to 0.50, is generally attributed to an extrinsic crack opening effect. In T-S orientation and at low stress intensity factor, the increasing of stress ratio increase the FCG. Experimental results are presented by Paris law when coefficients C and m are affected by stress ratio. Contrary, at high stress intensity factor, the effect of stress ratio is reversed. We notice a decreasing of fatigue crack growth rate with an increasing of stress ratio. This effect may be explained by microstructure effect in (T-S) crack growth. The analysis of stress ratio effect by Elber model, shown that this model gives bad interpolation in this situation and the parameter characterized the crack closure factor will be adjusted.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 4
- Cited by