Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:04:14.405Z Has data issue: false hasContentIssue false

Structural Analysis of Adsorption Processes on Silicon by Rheed

Published online by Cambridge University Press:  22 February 2011

Ayahiko Ichimiya*
Affiliation:
Department of Applied Physics, School of Engineering, Nagoya University Chikusa-ku, Nagoya 464-01, Japan
Get access

Abstract

On the basis of results of surface structure analyses by reflection high-energy electron diffraction(RHEED) with dynamical calculations, adsorption processes on Si(111) surface are discussed. On adsorption processes on Si(111)7×7 surface at room temperature, adatom bonds of the dimer-adatom-stacking-fault(DAS) structure are broken by adsorbed atoms and the structure changes into other 7×7 one called δ7×7. At the transition into the δ7×7 structure the dimer-stacking-fault(DSF) frame work is preserved. From rocking curve analyses during adsorption of Li and Si, back bonds of the adatoms of ])AS structure are cut off in the initial stage of the adsorption at about 0.2 monolayer coverage of the adsorbates. Metal adsorbed δ7×7 structures axe unstable and changes into structure by heating at about 300 °C with dissolution of the stacking fault layer into the normal stacking arrangement. During homoepitaxial growth of Si on Si(111)7×7 surface at about 300 °C, a new metastable surface structure is foundby RHEEDdynamical analysis. This structure is concluded as pyramidal cluster structure formed on the DSF frame work. It is discussed that formation of metastable structure promotes transition to from the 7×7, and promotes successive epitaxial growth accompanied with stacking fault dissolution at the DSF frame work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. masud, N. and Pendry, J. B., J. Phys. C9, 1833 (1976).Google Scholar
2. Maksym, P. A. and Beeby, J. L., Surf. Sci. 110, 423 (1981).Google Scholar
3. Ichimiya, A., Jpn. J. Appl. Phys. 22, 176 (1983); Jpn. J. Appl. Phys., 24, 1365 (1985).CrossRefGoogle Scholar
4. Peng, L.-M. and Cowley, J. M., Acta Crystallogr. 42, 545 (1989).Google Scholar
5. Zhao, T. C., Poon, H. C. and Tong, S. Y., Phys. Rev. 38, 1172 (1988).CrossRefGoogle Scholar
6. Ichimiya, A., Surf. Sci. 192, L893 (1987); The Structure of Surfaces 11 in press.Google Scholar
7. Takayanagi, K., Tanishiro, Y., Takahashi, M. and Takahashi, S., Surf. Sci. 164, 367 (1985).CrossRefGoogle Scholar
8. Tromp, R. M., Surf. Sci. 155, 432 (1985).Google Scholar
9. Tromp, R. M. and van Loenen, E. J., Surf. Sci. 155, 441 (1985).Google Scholar
10. Robinson, I. K., Waskiewicz, W. K., Fuoss, P. H., Stark, J. B. and Bennett, P. A., Phys. Rev. B 33, 7013 (1988).CrossRefGoogle Scholar
11. Tong, S. Y., Huang, H., Wei, C. M., Packard, W. E., Men, F. K., Glander, G. and Webb, M. B., J. Vacuum Sci. Technol. A6, 615 (1988).Google Scholar
12. Horio, Y. and Ichimiya, A., Surf. Sci. 219, 128 (1989).CrossRefGoogle Scholar
13. Qian, G.-X. and Chadi, D. J., Phys. Rev. 35, 1288 (1987).CrossRefGoogle Scholar
14. Yamaguchi, T., Phys. Rev. B34, 1085 (1986).CrossRefGoogle Scholar
15. Fujita, M., Nagayoshi, H. and Yoshimori, A., Surf. Sci. 208, 155 (1990).CrossRefGoogle Scholar
16. Yanagisawa, J. and Yoshimori, A., Surf. Sci. 231, 297 (1990).Google Scholar
17. Daimon, H. and Ino, S., Surf. Sci. 164, 320 (1985).Google Scholar
18. Ichimiya, A. and Mizuno, S., Surf. Sci. 191, L765 (1987).Google Scholar
19. Mizuno, S. and Ichimiya, A., Appl. Surf. Sci. 33/34, 38 (1988); S. Kohmoto and A. Ichimiya, Appl. Surf. Sci., 33/34, 45 (1988); S. Kohmoto, S. Mizuno and A. Ichimiya, Appl. Surf. Sci., 41/42, 107 (1989).CrossRefGoogle Scholar
20. Nakahara, H. and Ichimiya, A., J. Crystal Growth 99, 514 (1990).CrossRefGoogle Scholar
21. Ohtani, H., Kao, C.-T., van Hove, M. A. and Somorjai, G. A., Prog. Surf. Sci. 23, 155 (1986).CrossRefGoogle Scholar
22. Sakamoto, T., Kawai, N. J., Nakagawa, T., Ohta, K. and Kojima, T., Appl. Phys. letters 47, 617 (1985).Google Scholar
23. Nakahara, H. and Ichimiya, A., J. Crystal Growth 95, 472 (1989); Surf. Sci. in press.CrossRefGoogle Scholar
23. Lander, J. J., Surf. Sci. 1,125 (1964).CrossRefGoogle Scholar
25. Kohmoto, S. and Ichimiya, A., Surf. Sci. 223, 400 (1989).Google Scholar
26. Ichimiya, A. and Mizuno, S., ISIJ International 29, 576 (1989).Google Scholar
27. Horn von Hoegen, M., Falta, J. and Henzler, M., Thin Solid films 182, 213 (1989)CrossRefGoogle Scholar