Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:45:00.811Z Has data issue: false hasContentIssue false

Structural Properties of High Electronic Quality a-Si1-xCx:H by Infrared Spectroscopy

Published online by Cambridge University Press:  21 February 2011

K. Eberhardt
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart-80, Germany
E. Lotter
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart-80, Germany
M. Heintze
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart-80, Germany
H.-D. Mohring
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart-80, Germany
G.H. Bauer
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart-80, Germany
Get access

Abstract

Infrared (ir) spectroscopy is used to investigate the structural properties of a-SiC:H in a wide compositional range and as a function of film thickness. Hydrogen content NH increases considerably with increasing carbon fraction. For low carbon alloys this is mainly due to an increase of hydrogen bonded to silicon, incorporated in a mono- or dihydride form. Above Eg=2.3eV the proportion of hydrogen incorporated in C-H bonds increases considerably. Oxidation of high C alloys is observed. Converting experimental transmission exactly into absorption data yields thickness independent NH values. It is shown that the previously reported discrepancy between the hydrogen content calculated from ir and nuclear reaction techniques is an artifact of the ir analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mahan, A.H., von Roedern, B., Williamson, D.L. and Madan, A., J. Appl. Phys. 57(8), 2717 (1985)Google Scholar
2. Tawada, Y., Tsuge, K., Kondo, M., Okamoto, H., Hamakawa, Y., J. Appl. Phys 53(7), 5273 (1982)Google Scholar
3. Mohring, H.-D., Abel, C.-D., Briiggemann, R., Bauer, G.H., J. Non-cryst. Solids 137&138, 847 (1991)CrossRefGoogle Scholar
4. Maley, N. and Szafranek, I. in “Amorphous Silicon Technology-1990”, ed. by Taylor, P.C., Thompson, M.J., LeComber, P.G., Hamakawa, Y. and Madan, A. (Mat. Res. Soc. Proc. 192 Pittsburgh, PA 1990) p. 663 Google Scholar
5. Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Fang, C.J., Müller, G., Kalbitzer, S., J. Non-cryst. Solids 35&36, 255 (1980)Google Scholar
6. Nakazawa, K., Ueda, S., Kumeda, M., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. 21(3), L176 (1982)Google Scholar
7. Wieder, H., Cardona, M. and Guarnieri, C.R., phys. stat. sol(b) 92, 99 (1979)Google Scholar
8. Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., J. Appl. Phys. 53(11), 7299 (1982)Google Scholar
9. Cardona, M., phys. stat. sol. b 118, 463 (1983)Google Scholar
10. Heintze, M., Eberhardt, K., Kessler, F., Bauer, G.H., Proc. 10th E. C Photovoltaic Solar Energy Conference, Kluwer Academic Publishers, 1075 (1991)Google Scholar
11. Hasegawa, S. and Imai, Y. Phil. Mag. B 46, 239 (1982)Google Scholar
12. Blayo, N. and Drevillon, B., J. Non-cryst. Solids 137&138, 771 (1991)Google Scholar
13. Lotter, E. and Bauer, G.H., this volumeGoogle Scholar