Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:10:49.079Z Has data issue: false hasContentIssue false

Structure and Quasiparticle Energies of Cubic, Wurtzite and Hexagonal BN

Published online by Cambridge University Press:  21 February 2011

Giancarlo Cappellini
Affiliation:
INFM - Istituto di Fisica, Facoltà di Medicina e Chirurgia, Università di Cagliari, I-09125 Cagliari, Italy
Vincenzo Fiorentini
Affiliation:
INFM - Dipartimento di Scienze Fisiche, Università di Cagliari, I-09124 Cagliari, Italy
Katrin Tenelsen
Affiliation:
IFTO, Friedrich-Schiller-Universität, D-07743 Jena, Germany
Friedhelm Bechstedt
Affiliation:
IFTO, Friedrich-Schiller-Universität, D-07743 Jena, Germany
Get access

Abstract

We present local density functional theory (DFT-LDA) studies of the structural properties of boron nitride in the layered hexagonal (h-BN), zincblende (c-BN), and wurtzite (w-BN) structures, performed using a fast implementation of the norm-conserving pseud-opotential plane-wave method. Quasiparticle band structures are then calculated for all phases by means of an efficient GW self-energy scheme. To our knowledge, these are the first GW quasiparticle calculations for wurtzite BN including local-field and dynamical screening effects. DFT-LDA band gaps as functions of pressure and uniaxial distorsion for h-BN are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pearse, R. S., Acta Crystallogr. 5, 536 (1952).Google Scholar
2 Bundy, F.P. and Wentorf, R.H., J. Chem. Phys. 38, 1144 (1963).Google Scholar
3 Wentzcovitch, R.W., Cohen, M.L., and Lam, P.K., Phys. Rev. B 36, 6058 (1987).Google Scholar
4 Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology edited by Hellwege, K.-H., Group III, Vol. 17a (Springer, New York, 1982).Google Scholar
5 Blase, X., Rubio, A., Louie, S.G., and Cohen, M.L., Phys. Rev. B 51, 6868 (1995).Google Scholar
6 Stumpf, R. and Scheffler, M., Comp. Phys. Comm. 79, 447 (1994).Google Scholar
7 Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
8 Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
9 Chadi, D.J. and Cohen, M.L., Phys. Rev. B 8, 5747 (1973).Google Scholar
10 Furthmüller, J., Hafner, J. and Kresse, G., Phys. Rev. B 50, 15606 (1994).Google Scholar
11 Xu abd, Y. N. Ching, W. Y., Phys. Rev. B 44, 7787 (1991).Google Scholar
12 Bechstedt, F., Del Sole, R., Cappellini, G., and Reining, L., Solid State Comm. 84, 765 (1992).Google Scholar
13 Wenzien, B., Cappellini, G., and Bechstedt, F., Phys. Rev. B 51, 4397 (1995).Google Scholar
14 Christensen, N.E. and Gorczyca, I., Phys. Rev. B 50, 4397 (1994).Google Scholar
15 Suhr, M.P., Louie, S.G., and Cohen, M.L., Phys. Rev. B 43, 9126(1991).Google Scholar
16 Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 40, 9909 (1989).Google Scholar
17 Catellani, A., Posternak, M., Baldereschi, A., and Freeman, A.J., Phys. Rev. B 36, 6105 (1987).Google Scholar
18 Lambrecht, W.R.L. and Segall, B., Cap. 4 of Properties of Group HI Nitrides, ed. Edgar, J. H., EMIS Datareview Series (Institution of Electrical Engineers, 1994).Google Scholar
19 Park, K. T., Terakura, K., and Hamada, N., J. Phys. C 20, 1241 (1987).Google Scholar