Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T04:17:06.410Z Has data issue: false hasContentIssue false

Structure and Thermoelectric Properties of New Layered Compounds in the Quaternary System Cs-Pb-Bi-Te

Published online by Cambridge University Press:  21 March 2011

Kuei-Fang Hsu
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824, USA
Duck-Young Chung
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824, USA
Sangeeta Lal
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Tim Hogan
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824, USA
Get access

Abstract

By introducing of various equivalents of PbTe into the layered framework of CsBi4Te6, the four new compounds CsPbBi3Te6 (1), CsPb2Bi3Te7 (2), CsPb3Bi3Te8 (3) and CsPb4Bi3Te9 (4), were discovered. The compounds adopt layered structures built up of anionic slabs of progressively increasing thickness. The [PbmBi3Te5+m]- (m = 1, 2, 3, 4) slabs in the four structures can be viewed as fragments excised from the PbTe-type structures with 4-, 5-, 6- and 7-monolayers, respectively. As prepared, these materials are off-stoichiometric and n-type conductors. We present preliminary results of the crystal structures and thermoelectric properties of these materials and classify them as members of the new homologous series CsPbmBi3Te5+m (m = 1 to 4).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCarthy, T. J., Ngeyi, S. P., Liao, J. H., DeGroot, D., Hogan, T., Kannewurf, C. R., Kanatzidis, M. G. Chem. Mater. 5, 331340 (1993).Google Scholar
2. Chung, D. Y., Choi, K. S., Iordanidis, L., Kanatzidis, M. G., Schindler, J. L., Brazis, P. W., Kannewurf, C. R., Chen, B., Hu, S., C. Uher Chem. Mater. 9, 30603071 (1997).Google Scholar
3. Chung, D. Y., Jobic, S., Hogan, T., Kannewurf, C. R., Brec, R., Rouxel, J., Kanatzidis, M. G. J. Am. Chem. Soc. 119, 25052515 (1997).Google Scholar
4. Chung, D. Y.; Hogan, T.; Brazis, P. W.; Rocci-Lane, M.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. Science 287, 10241027 (2000).Google Scholar
5. Iordanidis, L., Brazis, P. W., Kyratsi, T., Ireland, J., Lane, M., Kannewurf, C. R., Chen, W., Dyck, J. S., Uher, C., Ghelani, N. A., Hogan, T., Kanatzidis, M. G. Chem. Mater. 13, 622633 (2001).Google Scholar
6. Zhukova, T. B., Zaslavskii, A. I. Sov. Phys. Crystallogr. 16, 796800 (1971).Google Scholar
7. Chami, R., Brun, G., Tedenac, J. C. Rev. Chim. Miner. 20, 305313 (1983).Google Scholar
8. Zhukova, T. B., Zaslavskii, A. I. Inorg. Mater. 12, 467469 (1976).Google Scholar
9. Golovanova, N. S., Zlomanov, V. P., Tananaeva, O. I. Inorg. Chem. 19, 669672 (1983).Google Scholar
10. Petrov, I. I., Imamov, R. M. Sov. Phys. Crystallogr. 14, 593596 (1969).Google Scholar
11. Hsu, K. F., Chung, D. Y., Lal, S., Mrotzek, A., Kyratsi, T., Hogan, T., Kanatzidis, M. G. J Am. Chem. Soc. 2002, in press.Google Scholar
12 Brown, I. D. J. Appl. Cryst. 29, 479480 (1996).Google Scholar