Article contents
Studies on Aqueous Two Phase Polymer Systems Useful for Partitioning of Biological Materials
Published online by Cambridge University Press: 15 February 2011
Abstract
The two phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) (PEG) are mixed above a critical concentration of a few percent provide a useful medium for the separation of biological cell subpopulations via partition between the top, PEG-rich phase and the liquid-liquid phase boundary. Interfacial tensions of such systems have been measured by the rotating drop technique and found to range between 10−1 and 102 μN m−1 . The tension was found to depend on the length of the tie line describing the system on a phase diagram, via a power law relationship which differed depending on the concentration of Na phosphate buffer present. The electrokinetic properties of drops of one phase suspended in the other were studied for a variety of systems. It was found that the droplet electrophoretic mobility increased monotonically with phosphate concentration and drop diameter but exhibited the opposite sign from that anticipated from phosphate partition measurements. It was possible to take advantage of these electrokinetic properties and dramatically enhance the speed of phase separation through application of relatively small electric fields.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1982
References
REFERENCES
- 1
- Cited by