Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:17:13.604Z Has data issue: false hasContentIssue false

A Study of Conformal GaAs on Si Layers by Micro-Raman and Spectral Imaging Cathodoluminescence

Published online by Cambridge University Press:  01 February 2011

Oscar Martínez
Affiliation:
oscar@fmc.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Paseo de Belen 1,, Edificio de I+D, Valladolid, 47011, Spain
Luis Felipe Sanz
Affiliation:
lfsanz@eis.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Paseo de Belen 1,, Edificio I+D, Valladolid, 47011, Spain
Juan Jiménez
Affiliation:
jimenez@fmc.uva.es, Universidad de Valladolid, Física Materia Condensada, Paseo de Belen 1, Edificio de I+D, Valladolid, 47011, Spain
Bruno Gérard
Affiliation:
bruno.gerard@3-5lab.fr, THALES, Corporate Research Laboratory, Orsay Cedex, 91404, France
Evelyn Gil-Lafon
Affiliation:
lafon@lasmea.univ-bpclermont.fr, LASMEA UMR CNRS 6602, Université Blaise Pascal, Les Cézeaux, Aubiére Cedes, 63177, France
Get access

Abstract

Spectral imaging cathodoluminescence and micro-Raman spectroscopy studies of GaAs layers grown on Si substrates by the conformal method allow to reveal a great variety of physical features of the layers, such as the complete stress distribution, self-doping effects, or the incorporation of dopants. We present herein the characterization of GaAs conformal layers grown by hydride vapor phase epitaxy, where the main issues concerning the distribution of defects and stresses are revealed. Also, intentionally doped layers were analyzed, revealing the main aspects of the incorporation of dopant impurities during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fang, S.F. Adomi, K. Iyer, S. Morkoc, H. Zabel, H. Choi, C. and Otsuka, N. J. Appl. Phys. 68, R31 (1990)Google Scholar
2. Tsugami, M. and Mitsui, K. Optoelectronics Devices and Technologies 4, 59 (1989)Google Scholar
3. Egawa, T. Jimbo, T. and Umeno, M. Jpn. J. Appl. Phys., Part 1 32, 650 (1993).Google Scholar
4. Yodo, T. and Tamura, M. Jpn. J. Appl. Phys., Part 1 34, 3457 (1995).Google Scholar
5. Gil-Lafon, E., Napierala, J. Castelluci, D. Pimpinelli, A. Cardonet, R. and Gerard, B. J. Crys. Growth 222, 482 (2001)Google Scholar
6. Mateo, C.M.N. Garcia, A.T. Ramos, F.R.M. Manibog, K.I. and Salvador, A.A., J. Appl. Phys. 101 (2007) 073519 Google Scholar
7. Holtz, M. Seon, M. Brafman, O. Manon, R. and Fekete, D. Phys. Rev. B 54, 8714 (1996)Google Scholar
8. Wickboldt, P. Anastassakis, E. Sauer, R. and Cardona, M. Phys. Rev. B 35, 1362 (1987)Google Scholar
9. Hong, K.N. Pavesi, L. Araújo, D., Ganière, J.D., and Reinhart, F.K. J. Appl. Phys. 70, 3887 (1991)Google Scholar
10. Ibàñez, J., Cuscó, R., and Artús, L., Phys. Status Solidi (b) 223, 715 (2001).Google Scholar